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A Library Size Normalization

Due to differences in sequencing depth, the read count of the same gene can vary in different samples

(or replicates), even if no biological effect exists. Therefore, in a first step, the raw count data needs to

be normalized by a library size factor in a first step. We calculate the normalization constant (a.k.a. size

factor) S similar to [1] with modifications:

SrT = median
i:yi,r

T >0

(
yi,rT + 1

n
√∏n

j=1(yi,jT + 1)

)
. (1)

The size factors of RNA-Seq and ribosome footprinting (RF) libraries are calculated separately. Here,

T denotes data type (RNA-Seq or RF); r denotes the r-th sample in data type T that includes replicates

of both experimental treatments. yi,rT is the observed count of type T for gene i in sample r. For all genes

in all replicates, we add one to their count value to avoid the degenerate case of setting the geometric

mean across all replicates (indexed by j) in the denominator to zero. We calculate the ratios of observed

counts of all genes in a given sample to the geometric means and determine the median of these ratios

whose count is greater than zero as the size factor.

The raw counts of gene i in sample r are normalized by the corresponding size factor.

B The Explanatory Matrix of GLM

As described in the main text, we decompose the expected count into multiple latent quantities. For

RNA-Seq, it is given by log(µimRNA,C) = βiC + βiRNA, whereas for RF it is given by log(µiRF,C) =

βiC + βiRF + βi∆,C . We use a generalized linear model (GLM) to learn the latent quantities βs from the

observed count data, and then calculate the means. To control the observed read counts fitting into

the GLM system, an n × 5 explanatory matrix X is designed, where n equals to the total number of

replicates in both experimental conditions for RNA-Seq and RF. Here we show it in the context of linear

predictor η of GLM (Equation 2), where η = X × β.

In X matrix, the first two columns represent the baseline mRNA abundance βiC in the two conditions.

The third and fourth columns (βiRNA and βiRF ) define whether the counts are from RNA-Seq or RF,

respectively.1 The fifth column (βi∆,C) relates the RF count to the potential translational effect. Each

1In the implementation, in order to keep full rank of X, we do not include the fourth column βi
RF , as it is linearly

dependent with the third column.
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row of X is used to control how the observed count of a specific sample should be decomposed into latent

quantities in order to fit the GLM models. In this example, as indicated by the third column, the first

four rows (marked in blue) model RNA-Seq counts with two replicates for each condition, C0 and C1,

while the last six rows (marked in green) model RF counts with three replicates for each condition. Note

the first and second columns in X are shared between mRNA and RF counts, where we couple the two

different data sets. The linear predictor η then is linked with negative binomial distributed mean µiRF,C

and µimRNA,C through logarithm as the link function, namely log(µ) = η = X ×β. The βs are estimated

by maximizing the likelihood of GLM [2].

In our model, the RNA and RF replicates are assumed to be independent of each other. The flexible

configuration allows different numbers of replicates to be analyzed. To extend RiboDiff to integrate

pairing information, we could modify the GLM model where the pairing term βip (p indexes the mRNA

and RF pair for each condition) is added to the linear equation. In this way, the pairing signal contributed

from a pair of mRNA and RF is absorbed by this term in GLM fitting.

Another possible extension to RiboDiff is to handle time series comparison. Assuming we have data

at different time points and the goal is to test whether time point n is significantly different from others

in treatment in a subset of genes. The GLM model for mRNA and RF abundance can be modified as

following: log(µimRNA,C) = βiC + βiRNA + βin + βielse and log(µiRF,C) = βiC + βiRF + βin + βielse + βi∆,C&n,

where βin and βielse are the latent quantities of time series effects and βi∆,C&n captures the possible TE

change at time point n under treatment condition.

After the βi is estimated for each gene, the expected RNA-Seq and RF counts, µimRNA,C and µiRF,C

can be obtained. The next step is to estimate the dispersion parameter κi by maximizing the negative

binomial likelihood function with the observed read counts and the expected counts of both RNA and

RF. See details in the next section.

η =


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

×



βiC=0

βiC=1

βimRNA

βiRF
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
. (2)

C Negative Binomial Likelihood Function

Because the count data are assumed to be sampled from a negative binomial distribution with parameter

mean µ and dispersion κ, we estimate κ given observed counts and the estimated mean by maximizing

the NB likelihood function (equation 4).

The probability mass function of the negative binomial distribution is given by

Pr(yi,j) =
(
yi,j + 1/κi,j − 1

yi,j

)(
1/κi,j

1/κi,j + µi,j

)1/κi,j(
1− 1/κi,j

1/κi,j + µi,j

)yi,j

, (3)
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where yi,j is the observed RF or mRNA read count of jth replicate of gene i; κi,j is the dispersion

parameter of the NB distribution where yi,j is drawn from; µi,j is the estimated count of jth replicate.

Thus the logarithmic likelihood of negative binomial of gene i is given by

log `NB =
n∑
j=1

log(Pr(yi,j))− 1
2

log(det(X ′ · diag(
µi

1 + µiκi
) ·X)). (4)

Note that the likelihood function is adjusted by a Cox-Reid term as suggested by Robinson et al. [3]

to compensate bias from estimating coefficients in fitting GLM step. Again, X is the explanatory matrix

with dimension n × 4 or n × 5, depending on H0 or H1, where n is the total number of RNA-Seq and

RF replicates; µi is the vector of estimated counts; κi is the dispersion vector.

In the previous section, we estimate βs by starting with an arbitrary value of dispersion. After we

update the dispersion from NB likelihood function, the new dispersion is plugged into the GLM again

to start a new optimization cycle. This process ends when the EM-like method converges or an iteration

maximum is reached.

D Empirical Bayes Shrinkage for Obtaining Final Dispersion

From previous steps, we obtain the dispersion for each gene. However, it is estimated only based on the

read counts of the gene itself, thus it is less reliable due to the limited replicates. Therefore, we need a

systematic method to adjust the raw dispersions. This can be accomplished by the following two steps:

1) Obtain the mean-dispersion relationship by regressing all raw dispersions κi given mean counts

under assumption: κF = f(µ) = λ1/µ + λ0 [4]. Namely, for each gene with mean count µi, a fitted

dispersion κiF can be calculated.

2) To get the final dispersion κiS , we follow the approach published recently [5]. This approach is

based on the observation that the dispersion follows a log-normal prior distribution [6] centered at the

fitted dispersion κiF . The κiS can be estimated by maximizing the following equation:

κiS = arg max
κi

S

(
`NB(κiS |yi, µi)−

(log κiS − log κiF )2

2σ2
p

)
, (5)

where σ2
p is the variance of the logarithmic residual between prior and the fitted dispersion κiF .

Moreover, the variance (σ2
w) of the logarithmic residual between raw dispersion κiR and κiF is comprised

of 1) the variance of sampling distribution of the logarithmic dispersion σ2
x and 2) σ2

p. The σ2
x can be

approximately obtained from a trigamma function:

σ2
x = ψ(

m− d
2

), (6)

where m is the number of samples and d is the number of coefficients. Whereas, the σ2
w is calculated

as the median absolute deviation (mad) of logarithmic residuals between pairs of κiR and κiF :

σ2
w = mad

i
(log κiR − log κiF ). (7)

Therefore, we can get the σ2
p by

σ2
p = σ2

w − σ2
x, (8)

and obtain the final dispersion κiS by maximizing the posterior in equation 5.
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Figure S-1: Scatter plot of empirical dispersions. The X-axis is split into several bins and the median κ

in each bin is highlighted and connected. The empirical κ smaller than zero are plotted at the bottom

of the figure.

E Estimating Dispersion for Different Sequencing Protocols Sep-

arately

Because RNA-Seq and ribosome footprinting are different sequencing protocols, the properties of the read

counts from these two protocols can vary. Therefore, we enable RiboDiff to infer dispersion parameters

κ for different data sources. Here we show an example where estimating κ separately may be needed.

The example data are from a recent publication [7].

The empirical dispersion estimates for RNA-Seq and RF counts are calculated from the following

equation [5, 8, 1, 9]:

σ2 = µ+ κµ2. (9)

Fig. S-1 shows the mean-dispersion relationship. It demonstrates the deviation of the empirical

dispersion of RNA-Seq and ribosome footprint data in this experimental setting. The deviation between

these two data sets becomes small when read count increases.
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F Data Simulation

To test the performance of RiboDiff and compare it to other methods, we simulated the RF and RNA-

Seq read count for 2,000 genes with 500 genes showing down regulated translation efficiency (TE) and

500 genes showing up regulated translation efficiency. There are three replicates for each of the two

conditions (i.e., treatment and control) for RNA-Seq and RF. Therefore, count matrix dimensions are

2,000 × 12.

We first generated the mean counts for two treatments of both RF and RNA-Seq across all 2,000 genes

assuming their mean counts are randomly drawn from a negative binomial distribution with parameter n

and p, where n = 1/κ and p = n/(n+µ). Then, for each mean count µi, we generated three count values

as three replicates from a negative binomial distribution with parameter µi and κi, where κi is calculated

as κi = f(µi) = λ1/µ
i + λ0. To simulate the genes with TE changes in two treatments, we multiply

the fold difference to the mean count of the target genes, assuming the fold changes follow a gamma

distribution that is observed from real data (GEO accession GSE56887). The gamma distribution has

a shape parameter α and a scale parameter s, and its mean µG = α · s. In the following simulation,

we fix s and only change α to obtain different means for the two treatments and simulate genes having

different fold changes using these two means. The fold increase FI is obtained by

FI = XG(α, s) + 1, (10)

where XG is a random vector containing 500 elements generated from a gamma density function. And

the fold decrease FD is obtained by

FD =
1
FI
. (11)

Here, we simulated five groups of count data. In each group, 1,000 out of 2,000 genes showing TE

changes:

• mean count has a fold change only for RF count, with α = 0.8;

• mean count has a fold change only for mRNA count, with α = 0.6;

• mean count has a fold change only for RF count, with α = 1.5;

• mean count has a fold change only for mRNA count, with α = 1.5;

• mean count has a fold change for RF with α = 0.8 AND for mRNA with α = 0.6, referred as

“combined” in Fig. S-2.

Note that in the last group, if the gene has fold increase in RF, it must have a fold decrease in

RNA-Seq. By doing this, the effect at the mRNA level is added to the TE change outcome instead of

offsetting the effect caused by RF. Other simulation parameters are as follow: for all RF and RNA-Seq,

n = 1, λ1 = 0.1, λ0 = 0.0001, s = 0.5. The parameter p controls the scale of the count. We use 0.008

for RF and 0.0002 for mRNA. We run RiboDiff with the five dataset to estimate its sensitivity and

specificity (Fig. S-2).

To evaluate how the number of replicates influences the dispersion estimation, RF and RNA-Seq

counts for 5, 000 genes with two to ten replicates for each condition were simulated using the same way

as described above. For instance, two replicates for condition A and two replicates for condition B in

RF, and the same number of replicates for condition A and B in RNA-Seq. In total, we have 9 data sets,

and each of them has a certain number of replicates ranging from two to ten. Next, we run RiboDiff on

these 9 data sets:
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Figure S-2: Sensitivity and specificity of RiboDiff on simulated data.

Number of Replicates

n =
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n =

n =

n =

n =
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C D

Figure S-3: Evaluation of RiboDiff by using different number of replicates. (A) Mean-dispersion rela-

tionship. (B) Comparison between the theoretical mean and estimated mean. (C) and (D) Sensitivity

and specificity of RiboDiff calculated under different number of replicates.
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Figure S-4: Comparison of ROC curves of RiboDiff and DESeq2 using simulated data. (A-C) The left

panel are the dispersions of mRNA and RF; the right panel are the corresponding ROC curves. From

the top to the bottom, the differences of dispersion are large, moderate and small, respectively.
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RiboDiff firstly estimates the raw dispersion κi for each gene based on their RF and RNA-Seq

counts. Then, a mean-dispersion relationship κF = f(µ) = λ1/µ + λ0 is obtained by regressing the

raw dispersion κi given the mean count µi using GLM to learn λ1 and λ0. Fig. S-3A shows the mean-

dispersion relationship function for different number of replicates. From this plot we can see that the

estimated mean-dispersion relationships, using three to ten replicates, are rather similar to each other,

whereas the result using only two replicates deviates from the rest. This indicates that the raw dispersion

κi estimated using two replicates is less reliable. We observed that the dispersion estimates of high read

count genes are larger if only two replicates are used, which can decreases true positive rate.

We use the same simulated data set to show how the number of replicates affects the latent quantity

β. For each gene, there are multiple β’s that represent different latent quantities, and these βs are

summed up to obtain the estimated counts of RNA-Seq or RF. Hence, we compare the estimated RF

count (µiRF ) of every gene i against their mean counts (theoretical means) that are used to generate

the negative binomial counts in the data simulation. In Fig. S-3B, each subplot is the comparison of

estimated counts (Y axis) from n replicates against the theoretical means (X axis). As we can see, the

theoretical means and the estimated means correlate well in all 9 experiments (all r > 0.99).

Fig. S-3C and D show how sensitivity and specificity depend on a chosen p-value threshold. For

the sensitivity, the area under curves for 2 to 10 replicates increases when the number of replicates

increase, whereas the specificities from the same data set do not have large difference among them. This

illustrates that the test is well-calibrated and that one can recommend using three replicates to achieve

a close-to-best sensitivity.

As RiboDiff uses similar technical concept as DESeq2 [5], we compare the performances of the two

methods. Here, DESeq2 uses a specific design formula: condition + protocol + condition:protocol.

The interaction term between sequencing protocol and experimental condition represents the possible

condition differences controlling for protocol type.

We simulated three data sets of RNA-Seq and RF counts where gradient differences of dispersion

between mRNA and RF were applied to the two data types. The same simulation strategy was used as

we described before with modifications. Briefly, 1, 000 out of 2, 000 genes were chosen to show ∆TE fold

change by altering their mean counts of mRNA and RF. The following parameters were used to generate

the mRNA count: n = 1, p = 0.5 × 10−4, λ1 = 0.1, λ0 = 0.1 × 10−3, α = 0.8, s = 0.5. And for RF

count, we used n = 1, p = 0.1 × 10−2, λ1 = 10.0, λ0 = 0.01, α = 0.8, s = 0.5. Next, we multiplied

the mRNA dispersion of every gene in the first data set by a factor of 10, and used the new dispersion

to generate mRNA counts for the second data set. Similarly, to obtain the third data set, the original

mRNA dispersions were multiplied by 100. We used the same parameters to generate the RF counts

for all three data sets. In Fig. S-4, from the top to the bottom, the three dispersion plots on the left

side show the three simulated data sets where mRNA dispersions are approaching to merge with RF

dispersions. The ROC curves on the right side are the corresponding performances of RiboDiff with

joint and separate dispersion estimates and DESeq2. Although RiboDiff with joint dispersion estimate

performs similar to DESeq2, estimating dispersion separately yields better results under the condition

of different dispersions of the two protocols.

G Results from Real Biological Data

We use previously published ribosome footprint and RNA-Seq data (GEO accession GSE56887) to com-

pare RiboDiff with a Z-score based method [10]. The sequencing data were processed in a similar way as

before [11], which includes trimming the adapter tail in the reads, aligning the reads, filtering the ribo-
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somal RNA contamination, and counting the reads for genes, etc. For gene i, the change of translation

efficiency ∆TEi is calculated by

∆TEi =
Ki
RF,A/K

i
RNA,A

Ki
RF,B/K

i
RNA,B

, with Ki
t,c = mean

j
(yi,jt,c), (12)

where t denotes the data type, as t = {RF, RNA-Seq}; c denotes the treatment condition A or B, as

c = {A,B}; j indexes the replicates. yi,jt,c means the t type of read count y of gene i in its jth replicate

under condition c. A Z-score was then calculated for each gene as following:

zi =
∆TEi − µ∆TE

σ∆TE
, (13)

where µ∆TE is the mean of ∆TE of all genes; σ∆TE is the standard deviation. The genes with | zi | ≥
1.5 are selected as significant. Fig. S-5A and B show the overlap of significant genes between RiboDiff

and Z-score based method are limited in both TE down and up regulated gene sets. Further analysis

indicates most of the significant genes detected by the Z-score based method having their mean RF

counts smaller than 100 with only a few exceptional cases. In contrast, the significant genes detected by

RiboDiff scatter over a wide range of mean RF count (Fig. S-5C and D). It is rational that for highly

translated genes, it is more confident to identify significant TE change between two treatments due to

enough supported read counts. This is the reason that RiboDiff can detect highly translated genes as

significant ones even though their absolute value of Z-score are less than 1.5 (| ∆TE | below the dashed

lines in Fig. S-5C and D). This comparison indicates RiboDiff identifies more sensible hits and is not

biased towards genes with low mean count that inherently have more uncertainty rather than statistically

significant differences.

Here, we also compare the new TE change gene sets detected by RiboDiff and the previous corre-

sponding gene sets published in [11] (Fig. S-6). RiboDiff detected twice as many as before, and more

than 90% genes from the old study are included in the new gene sets.

H Pipeline of ribosome footprinting and RNA-Seq data pro-

cessing

The deep sequencing based ribosome footprinting has many unique features compared to regular RNA-

Seq data. The flowchart of computational procedure for preprocessing the footprint data is shown

in Figure S-7. Here we discuss its distinct features at each step of data processing before running

RiboDiff’s differential test on the count input. The relevant scripts that specifically aim for doing each

data processing tasks can be found in the RiboDiff package.

• Sequencing procedure can introduce bias to the library of replicates. It is always helpful to check

the quality of the FASTQ file. Statistics on sequence GC content, length distribution, duplication

level, adaptor content and kmer enrichment can provide information from different angles to identify

outliers from usable libraries. Publically available tools for doing these tasks are well established

and can easily be obtained online.

• In the raw FASTQ file of footprinting, rRNA contamination can take up 25 to 70% of the entire

sequences of a library. We construct rRNA databases for specific organisms by collecting their

rRNA sequences from SILVA [12]. Both footprint and RNA-Seq reads are aligned to the rRNA

database to identify rRNA reads that need to be filtered.
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| z-score | ≥ 1.5
All tested genes
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Figure S-5: Comparison between RiboDiff and a Z-score based method on real biological data. (A and

B) Venn diagrams showing the number of overlapping and self specific genes detected by RiboDiff and

Z-score based method. (A) TE down regulated genes. (B) TE up regulated genes. Red ellipse: results

from RiboDiff; blue ellipse: results from Z-score based method. (C and D) Scatter plot of mean RF

count against the | ∆TE |. (C) Result of RiboDiff. Significant genes are labeled as red. (D) Result of

Z-score based method. Significant genes are labeled as blue. The narrow panels above the scatter plots

are the estimated density functions of significant genes on x-axes by using non-parametric kernel density

estimation.

266 15335

A B

180 10361

Figure S-6: Comparison of results from RiboDiff and Wolfe et al. (A) TE down regulated genes. (B) TE

up regulated genes. Red circle: results from RiboDiff; purple circle: results reported in previous study

[11].
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Figure S-7: The flowchart of computational pipeline for analyzing ribosome footprint data.

• Next, we use STAR [13] to align both footprint and RNA-Seq reads to the reference genome to get

mapping information. STAR is an ultrafast and accurate aligner that also supports junction reads

crossing exon splicing site. It also trims the linker sequence (CTGTAGGCACCATCAAT) on the

3’ of footprint reads while aligning them to the reference. Ribosome protected mRNA sequences

are short (normally from 20 to 40 nt), therefore, to minimize the effect of multiple mapping, only

uniquely aligned reads are used.

• The identified rRNA reads from step 2 are removed from the alignment of footprint and RNA-Seq.

It is also recommended to check whether footprint reads are clipped even after trimming the linker

sequence. Over-clipped short reads are prone to produce ambiguous alignments.

• The last step of preprocessing the data is counting reads for each gene. We add a counting script

that only takes the reads mapping the exonic regions guided by an annotation GTF file.
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