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Abstract

In this supplement we provide additional simulation results and the proofs of the main

theorems. Some key technical tools used in the proofs of the main results are also developed

and proved.

1 Additional Simulation Results

We consider the effect of the number of the observed rows and columns on the estimation

accuracy. We let p1 = p2 = 1000, let the singular values of A be {j−1, j = 1, 2, ...} and let

m1 and m2 vary from 10 to 210. The singular spaces U and V are again generated randomly

from the Haar measure. The estimation errors of Â22 from Algorithm 2 with row thresholding

and TR = 2
√
p1/m1 over different choices of m1 and m2 are shown in Figure 1. As expected,

the average loss decreases as m1 or m2 grows. Another interesting fact is that the average

loss is approximately symmetric with respect to m1 and m2. This implies that even with

different numbers of observed rows and columns, Algorithm 2 has similar performance with

row thresholding or column thresholding.
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(a) Spectral norm loss
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(b) Frobenious norm loss

Figure 8: Losses for the settings with singular values of A being {j−1, j = 1, 2, ...}, p1 = p2 =

1000, m1,m2 = 10, ..., 210.

We are also interested in the performance of Algorithm 2 as p1 and the ratio m1/p1 vary.

To this end, we consider the setting where p2 = 1000, m2 = 50, and the singular values of A

are chosen as {j−1, j = 1, 2, ...}. The results are shown in Figure 9. It can be seen that when

m1/p1 increases, the recovery is generally more accurate; when m1/p1 is kept as a constant,

the average loss does decrease but not converge to zero as p1 increases.

2 Technical Tools

We collect important technical tools in this section. The first lemma is about the inequalities

of singular values in the perturbed matrix.

Lemma 1 Suppose X ∈ Rp×n, Y ∈ Rp×n, rank(X) = a, rank(Y ) = b,

1. σa+b+1−r(X + Y ) ≤ min(σa+1−r(X), σb+1−r(Y )) for r ≥ 1;

2. if we further have XᵀY = 0, we must have a+ b ≤ n, σr(X + Y ) ≥ max(σr(X), σr(Y )) for

r ≥ 1.
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Figure 9: Losses for settings with singular values of A being {j−1, j = 1, 2, 3...}, p2 = 1000,

m2 = 50, m1/p1 = 1/4, 1/12, 1/20, 1/28, 1/36, and p1 = 100, ..., 100, 000.

Lemma 2 Suppose X ∈ Rp×n, Y ∈ Rn×m are two arbitrary matrices, denote ‖ · ‖q, ‖ · ‖ as

the Schatten-q norm and spectral norm respectively, then we have

‖XY ‖q ≤ ‖X‖q · ‖Y ‖. (22)

The following two lemmas provide examples that illustrate NNM fails to recover Â22.

Lemma 3 Assume A = B1B
T
2 , where B1 ∈ Rp1×r and B2 ∈ Rp2×r are two i.i.d. standard

Gaussian matrices. Let A is divided into blocks as (1). Suppose

r ≤ 1

400
min(p1, p2), m1 ≤

1

25
p1, m2 ≤

1

25
p2, (23)

then the NNM (3) fails to recover A22 with probability at least 1− 12 exp(−min(p1, p2)/400).

Lemma 4 Denote 1p as the p-dimensional vector with all entries 1. Suppose A = 1p1 · 1ᵀp2,

and A is divided into blocks as (1). Then the NNM (3) yields

Â22 = min

{√
m1m2

(p1 −m1)(p2 −m2)
, 1

}
1p1−m11

ᵀ
p2−m2

.

The following result is on the norm of a random submatrix of a given orthonormal matrix.
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Lemma 5 Suppose U ∈ Rp×d is a fixed matrix with orthonormal columns (hence d ≤ p).

Denote W = max1≤i≤p
p
d
·
∑d

j=1 u
2
ij. Suppose we uniform randomly draw n rows (with or

without replacement) from U and note the index as Ω and denote

UΩ =


UΩ(1)

...

UΩ(n)

 .
When n ≥ 4Wd(log d+c)

(1−α)2
for some 0 < α < 1 and c > 1, we have

‖σmin(UΩ)‖ ≥
√
αn

p

with probability 1− 2e−c.

The following results is about the spectral norm of the submatrix of a random orthonormal

matrix.

Lemma 6 Suppose U ∈ Rp×d (d ≤ p) is with random orthonormal columns with Haar mea-

sure. For all 0 < α1 < 1 < α2, there exists constant C, δ > 0 depending only on α1, α2 such

that when p ≥ n ≥ min{Cd, p}, we have√
α1n

p
≤ σmin(U[1:n,:]) ≤ ‖U[1:n,:]‖ ≤

√
α2n

p
(24)

with probability at least 1− exp(−δn).

Proof of the Technical Lemmas

Proof of Lemma 1.

1. First, by a well-known fact about best low-rank approximation,

σa+b+1−r(X + Y ) = min
M∈Rp×n,rank(M)≤a+b−r

‖X + Y −M‖.

Hence,

σa+b+1−r(X + Y ) ≤ ‖X + Y − (Xmax(a−r) + Y )‖ = ‖X−max(a−r)‖ = σa+1−r(X);

similarly σa+b+1−r(X + Y ) ≤ σb+1−r(Y ).
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2. When we further have XᵀY = 0, we know the column space of X and Y are orthogonal,

then we have rank(X + Y ) = rank(X) + rank(Y ) = a + b, which means a + b ≤ n. Next,

note that

(X + Y )ᵀ(X + Y ) = XᵀX + Y ᵀY +XᵀY + Y ᵀX = XᵀX + Y ᵀY,

if we note λr(·) as the r-th largest eigenvalue of the matrix, then we have

σ2
r(X + Y ) =λr((X + Y )ᵀ(X + Y )) = λr(X

ᵀX + Y ᵀY )

≥max(λr(X
ᵀX), λr(Y

ᵀY )) = max(σ2
r(X), σ2

r(Y )).

�

Proof of Lemma 2. Since

‖XY ‖q = q

√∑
i

σqi (XY ), ‖X‖q = q

√∑
i

σqi (X),

it suffices to show σi(XY ) ≤ σi(X)‖Y ‖. To this end, we have

σi(X) = min
M∈Rp×m,rank(M)≤i−1

‖XY −M‖ ≤ ‖XY −Xmax(i−1)Y ‖ = ‖X−max(i−1)Y ‖ ≤ σi(X)‖Y ‖,

which finishes the proof of this lemma. �

Proof of Lemma 3. Since B1 and B2 and their submatrices are all i.i.d. standard matrices,

by the random matrix theory (Corollary 5.35 in Vershynin (2010)), for t > 0, we have with

probability at least 1− 12 exp(−t2/2), the following inequalities hold,

λr(A) ≥λmin(B1)λmin(B2) ≥ (
√
p1 −

√
r − t)(√p2 −

√
r − t)

(23)

≥
(

19

20

√
p1 − t

)(
19

20

√
p2 − t

) (25)

‖A1•‖ = ‖B1,[1:m1,:]B
T
2 ‖ ≤ (

√
m1 +

√
r+t)(

√
p2 +
√
r+t)

(23)

≤
(

1

4

√
p1 + t

)(
21

20

√
p2 + t

)
(26)

and

‖A21‖ =‖B1,[(m1+1):p1,:]B
T
2,[1:m2,:]

‖ ≤ (
√
p1 +

√
r + t)(

√
m2 +

√
r + t)

(23)

≤
(

21

20

√
p1 + t

)(
1

4

√
p2 + t

)
.

(27)
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Denote

A0 =

A11 A12

A21 0


and set t = 1

20
min(

√
p1,
√
p2). Since ‖A0‖∗ ≤ ‖A1•‖∗ + ‖A21‖∗, , we have

P

(
‖A‖∗ ≥

326

400

√
p1p2

)
≥ 1− 12 exp(−min(p1, p2)/400) (28)

and

P

(
‖A0‖∗ ≤

264

400

√
p1p2

)
≥ 1− 12 exp(−min(p1, p2)/400). (29)

Hence, with probability at least 1 − 12 exp(−min(p1, p2)/400), ‖A0‖∗ < ‖A‖∗, which implies

that the NNM (3) fails to recover A22. �

Proof of Lemma 4. For convenience, we denote x∧ y = min(x, y) for any two real numbers

x, y. First, we can extend the unit vectors 1√
m1

1m1 ,
1√
m2

1m2 ,
1√

p1−m1
1p1−m1 and 1√

p2−m2
1p2−m2

into orthogonal matrices, which we denote as Um1 ∈ Rm1×m1 , Um2 ∈ Rm2×m2 , Up1−m1 ∈

R(p1−m1)×(p1−m1), Up2−m2 ∈ R(p2−m2)×(p2−m2). Next, for all A′22 ∈ R(p1−m1)×(p2−m2), we must

have ∥∥∥∥∥∥
A11 A12

A21 A′22

∥∥∥∥∥∥
∗

=

∥∥∥∥∥∥
Uᵀm1

0

0 Uᵀp1−m1

 ·
A11 A12

A21 A′22

 ·
Um2 0

0 Up2−m2

∥∥∥∥∥∥
∗

,

∥∥∥∥∥∥
E11 E12

E21 Uᵀp1−m1
A′22Up2−m2

∥∥∥∥∥∥
∗

,

where E11 ∈ Rm1×m2 , E12 ∈ Rm1×(p2−m2), E21 ∈ R(p1−m1)×m2 are with the first entry
√
m1m2,√

m1(p2 −m2) and
√
m2(p1 −m1) respectively and other entries 0. Therefore, we can see∥∥∥∥∥∥

E11 E12

E21 Uᵀp1−m1
A′22Up2−m2

∥∥∥∥∥∥
∗

≥

∥∥∥∥∥∥
 √

m1m2

√
m1(p2 −m2)√

m2(p1 −m1) [Uᵀp1−m1
A′22Up2−m2 ][1,1]

∥∥∥∥∥∥
∗

and the equality holds if and only if Uᵀp1−m1
A′22Up2−m2 is zero except the first entry.

By some calculation, we can see the nuclear norm of 2-by-2 matrix∥∥∥∥∥∥
 √

m1m2

√
m1(p2 −m2)√

m2(p1 −m1) x

∥∥∥∥∥∥
∗

6



achieves its minimum if and only if

x =
√
m1m2 ∧

√
(p1 −m1)(p2 −m2).

Hence, A′22 achieves the minimum of

∥∥∥∥∥∥
A11 A12

A21 A′22

∥∥∥∥∥∥
∗

if and only if

Uᵀp1−m1
A′22Up2−m2 =


√
m1m2 ∧

√
(p1 −m1)(p2 −m2) 0 · · ·

0 0

...
. . .

 ,

which means the minimizer A′22 =

(√
m1m2

(p1−m1)(p2−m2)
∧ 1

)
· 1p1−m11

ᵀ
p2−m2

. �

Proof of Lemma 5. The proof of this lemma relies on operator-Bernstein’s inequality for

sampling (Theorem 1 in Gross and Nesme (2010)). For two symmetric matrices A, B, we

say A � B if B − A is positive definite. By assumption, {UΩ(j)•, j = 1, · · · , n} are uniformly

random samples (with or without replacement) from {Ui•, i = 1, · · · , n}. Suppose

Xi = Uᵀi•Ui• −
1

p
Id, i = 1, · · · , p, (30)

then Xi are symmetric matrices, XΩ(j), j = 1, · · · , n are uniformly random samples (with or

without replacement) from {X1, · · · , Xp}. In addition, we have

EXj =
1

p

p∑
i=1

Uᵀi•Ui• −
1

p
Id =

1

p
UᵀU − 1

p
Id = 0

‖Xj‖ ≤ max
1≤i≤p

∥∥∥∥Uᵀi•Ui• − 1

p
Id

∥∥∥∥ ≤ max
1≤i≤p

max

{
‖Uᵀi•Ui•‖ ,

1

p
‖Id‖

}
≤ Wd

p

EX2
j =

1

p

p∑
i=1

(
Uᵀi•Ui• −

1

p
Id

)2

=
1

p

p∑
i=1

(
Uᵀi•Ui•U

ᵀ
i•Ui• −

2

p
Uᵀi•Ui• +

1

p2
Id

)

=
1

p

p∑
i=1

‖Ui•‖2
2 · U

ᵀ
i•Ui• −

1

p2
Id

�1

p
· Wd

p

p∑
i=1

Uᵀi•Ui• −
1

p2
Id �

Wd− 1

p2
Id
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For all 0 < α < 1, by Theorem 1 in Gross and Nesme (2010),

P

(
‖UΩ‖ ≤

√
αn

p

)
= P

(
UᵀΩUΩ �

αn

p
Id

)
= P

(
n∑
j=1

UᵀΩ(j)•UΩ(j)• �
αn

p
Id

)

= P

(
n∑
j=1

Xj � −
(1− α)n

p
Id

)
≤ P

(∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥ ≥ (1− α)n

p

)

≤ 2d exp

(
−min

(
((1− α)n/p)2

4n(Wd− 1)/p2
,
(1− α)n/p

2Wd/p

))

≤ 2d exp

(
−n(1− α)2

4Wd

)
≤ 2 exp(−c).

The last inequality is due to the assumption that

n ≥ 4Wd(log d+ c)

(1− α)2
.

�

Proof of Lemma 6. By the assumption on n, we have n ≥ p or n ≥ Cd. When n ≥ p, we

know n = p and U[1:n,:] = U is an orthogonal matrix, which means (24) is clearly true. Hence,

we only need to prove the theorem under the assumption that p ≥ n is true. In this case, we

must have n ≥ Cd.

Since U has random orthonormal columns with Haar measure, for any fixed vector v ∈ Rd,

Uv is identitical distributed as

‖x‖−1
2 (x1, x2, · · · , xp) , where x1, · · · , xp

iid∼ N(0, 1)

Hence, U[1:n,:]v is identical distributed with ‖x‖−1
2 (x1, · · · , xn) and

‖U[1:n,:]v‖2 is identical distributed as

√√√√(
n∑
i=1

x2
i )(

p∑
i=1

x2
i )
−1, (31)

which is the also the square root of Beta distribution. Denote

α′1 =
1 + α1

2
, α′2 =

1 + α2

2
. (32)
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By Lemma 1 in Laurent and Massart (2000), when x1, · · · , xp are i.i.d. standard normal, we

have

1− 2
√
C ′ ≤

∑n
i=1 x

2
i

n
≤ 1 + 2

√
C ′ + 2C ′

1− 2

√
C ′n

p
≤
∑p

i=1 x
2
i

p
≤ 1 + 2

√
C ′n

p
+

2C ′n

p

both hold with probability at least 1− 4 exp(−C ′n). Here we let C ′ > 0 be small enough and

only depending on α1, α2 such that

α′1 ≤
1− 2

√
C ′

1 + 2
√
C ′ + 2C ′

,
1 + 2

√
C ′ + 2C ′

1− 2
√
C ′

≤ α′2.

Combining the previous inequalities and (31), we have for any fixed unit vector v ∈ Rd,

α′1n

p
≤ ‖U[1:n,:]v‖2

2 ≤
α′2n

p
(33)

with probability at least 1 − 4 exp(−C ′n), where C ′ only depends on α′1, α
′
2. Next, based on

Lemma 2.5 in Vershynin (2013), we can construct an ε-net on the unit sphere of Rd as B,

such that |B| ≤ (1 + 2/ε)d, where ε > 0 is to be determined later. Under the event that

{∀v ∈ B, (33) holds}, we suppose

κ1 = min
‖v‖2=1

‖U[1:n,:]v‖2
2, κ2 = max

‖v‖2=1
‖U[1:n,:]v‖2

2.

For any v in the unit sphere of Rd, there must exists v′ ∈ B such that ‖v − v′‖2 ≤ ε, which

yields,

‖U[1:n,:]v‖2 ≤ ‖U[1:n,:]v
′‖2 + ‖U[1:n,:](v − v′)‖2 ≤

√
α′2n/p+ κ2ε

‖U[1:n,:]v‖2 ≥ ‖U[1:n,:]v
′‖2 − ‖U[1:n,:](v − v′)‖2 ≥

√
α′1n/p− εκ2

These implies that κ2 ≤
√
α′2n/p/(1−ε), κ1 ≥

√
α′1n/p−εκ2 ≥

√
α′1n/p−

√
α′2n/p ·ε/(1−ε).

Hence, we can take ε depending on α1, α2 such that κ2 ≤
√
α2n/p, κ1 ≥

√
α1n/p, which

implies (24).

Finally we estimate the probability that the event {∀v ∈ B, (33) holds} happens. We

choose C ≥ 4d log(1 + 2/ε)/C ′ that only depends on α1 and α2. If n ≥ Cd,

C ′n/2 ≥ d log(1 + 2/ε) + log 4.

9



so

1− (1 + 2/ε)d · 4 exp(−C ′n) = 1− exp(d log(1 + 2/ε) + log 4− C ′n) ≥ 1− exp(−nC ′/2)

Finally, we finish the proof of the lemma by setting δ = C ′/2. �

3 Proofs of the Results in the Main Paper

We prove Proposition 1, Theorems 1 and 2, Lemma 7, Lemma 8, Theorem 3, Corollary 1 and

Corollary 2 in this section.

Proof of Proposition 1

Since A1• is of rank r, which is the same as A, all rows of A must be linear combinations of the

rows of A1•. This implies all rows of A•1 is a linear combination of A11. Since rank(A•1)= r,

we must have rank(A11) ≥ r. Besides, rank(A11) ≤ rank(A) = r since A11 is a submatrix of

A. So rank(A11) = r. Simiarly, rows of A•1 is the linear combination of A11, so we have

A21 = A21PA11 = A21A
ᵀ
11(A11A

ᵀ
11)†A11 = A21V ΣUᵀ(UΣ2Uᵀ)†A11 =

(
A21V Σ−1Uᵀ

)
A11,

namely rows of A21 is a linear combination of A11. By the argument before, we know A22

can be represented as the same linear combination of A12 as A21 by A11, so we have A22 =

(A21V Σ−1Uᵀ)A12 = A21V Σ−1UᵀA12 = A21A
†
11A12, which concludes the proof. �

Proof of Theorem 1

Suppose M ∈ Rm1×r, N ∈ Rm2×r are column orthonormalized matrices of U11 and V11. M̂ ∈

Rm1×r and N̂ ∈ Rm2×r are the first r left singular vectors of A1• and A•1, respectively. Also,

recall that we use PU = U(UᵀU)†Uᵀ to represent the projection onto the column space of U .

1. We first give the lower bound for σmin(M̂ᵀM), σmin(N̂ᵀN) by the unilateral perturbation

bound result in Cai and Zhang (2014). Since,

PU11A1• = PU11U1•ΣV
ᵀ = [U11Σ1, PU11U12Σ2]V ᵀ, PU⊥11A1• = PU⊥11U1•ΣV

ᵀ = [0, PU⊥11U12Σ2]V ᵀ,

10



by V is an orthogonal matrix, we can see

σr(PU11A1•) = σr([U11Σ1 PU11U12Σ2]) ≥ σr(U11Σ1) ≥ σr(A)σmin(U11),

‖PU⊥11A1•‖ = ‖PU⊥11U12Σ2‖ ≤ ‖PU⊥11U12‖‖Σ2‖ ≤ σr+1(A).

So σr(PU11A1•) ≥ ‖PU⊥11A1•‖. Besides, rank(PU11A1•) ≤ r. Apply the unilateral perturbation

bound result in Cai and Zhang (2014) by setting X = PU11A1•, Y = PU⊥11A1•, we have

σ2
min(M̂ᵀM) ≤ 1−

(
‖Y · PXᵀ‖ · σr+1(A)

σ2
r(A)σ2

min(U11)− σ2
r+1(A)

)2

. (34)

Moreover, A1• = [U11 U12]diag(Σ1,Σ2)V ᵀ = [U11Σ1 U12Σ2]V ᵀ, and hence,

‖Y PXᵀ‖ =
∥∥∥PU⊥11A1• · P(PU11

A1•)ᵀ

∥∥∥ =
∥∥∥[0 PU⊥11U12Σ2]V ᵀ · PV ·[U11Σ1 PU11

U12Σ2]ᵀ

∥∥∥
=
∥∥∥[0 PU⊥11U12Σ2] · P[U11Σ1 PU11

U12Σ2]ᵀ

∥∥∥ = sup
x∈Rp2 ,‖x‖2=1

[0 PU⊥11U12Σ2] · P[U11Σ1 PU11
U12Σ2]ᵀx.

When ‖x‖2 = 1, let y denote the projection of x onto the column space of [U11Σ1 PU11U12Σ2]ᵀ.

Then ‖y‖2 ≤ 1 and y is in the column space of [U11Σ1 PU11U12Σ2]ᵀ. Hence,

‖y[1:m1]‖2

‖y[(m1+1):p1]‖2

≥ σmin(U11Σ1)

‖PU11U12Σ2‖
≥ σmin(U11)σr(A)

σr+1(A)
and ‖y[(m1+1):p1]‖2

2 + ‖y[1:m1]‖2
2 ≤ 1,

which implies ‖y[(m1+1):p1]‖2
2 ≤ σ2

r+1(A)/σ2
min(U11)σ2

r(A) + σ2
r+1(A). Hence for all x ∈ Rp2

such that ‖x‖2 = 1,∥∥∥[0 PU⊥11U12Σ2] · P[U11Σ1 PU11
U12Σ2]ᵀx

∥∥∥ ≤‖PU⊥11U12Σ2‖ · ‖y[m1+1:p1]‖2

≤σr+1(A)
σr+1(A)√

σ2
r+1(A) + σ2

min(U11)σ2
r(A)

.

This yields ‖Y PXᵀ‖ = ‖PU⊥11A1• · P(PU11
A1•)‖ ≤ σ2

r+1(A)/
√
σ2
r+1(A) + σ2

min(U11)σ2
r(A). Com-

bining (34), we have

σ2
min(M̂ᵀM) ≥1−

(
σ3
r+1(A)√

σ2
r+1(A) + σ2

min(U11)σ2
r(A)

(
σ2
r(A)σ2

min(U11)− σ2
r+1(A)

))2

. (35)

Since σmin(U11)σr(A) ≥ 2σr+1(A), we have

σ2
min(M̂ᵀM) ≥ 1−

(
1√
5 · 3

)2

≥ 44

45
.

Similarly, we also have σ2
min(N̂ᵀN) ≥ 44

45
.
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2. Following by (8),

Â22 = U2•ΣV
ᵀ

1•N̂
(
M̂ᵀ(U1•ΣV

ᵀ
1•)N̂

)−1

M̂ᵀU1•ΣV
ᵀ

2•

=
(
U21Σ1V

ᵀ
11N̂ + U22Σ2V

ᵀ
12N̂

)(
M̂ᵀU11Σ1V

ᵀ
11N̂ + M̂ᵀU12Σ2V

ᵀ
12N̂

)−1 (
M̂ᵀU11Σ1V

ᵀ
21 + M̂ᵀU12Σ2V

ᵀ
22

)
.

Let “L”, “M”, “R” stand for “Left”, “Middle” and “Right”,

BL = U21Σ1V
ᵀ

11N̂ , EL = U22Σ2V
ᵀ

12N̂ ; (36)

BM = M̂ᵀU11Σ1V
ᵀ

11N̂ , EM = M̂ᵀU12Σ2V
ᵀ

12N̂ ; (37)

BR = M̂ᵀU11Σ1V
ᵀ

21, ER = M̂ᵀU12Σ2V
ᵀ

22. (38)

By Lemma 2 in the Supplement, we can see the following properties of these matrices,

‖EL‖ ≤ σr+1(A), ‖EM‖ ≤ σr+1(A), ‖ER‖ ≤ σr+1(A), (39)

‖EL‖q ≤ ‖Σ2‖q, ‖EM‖q ≤ ‖Σ2‖q, ‖ER‖q ≤ ‖Σ2‖q, (40)

σmin(BM) = σmin

(
M̂ᵀ(PMU11)Σ1(V ᵀ11PN)N̂

)
= σmin

(
(M̂ᵀM)(MᵀU11)Σ1(V ᵀ11N)(NᵀN̂)

)
≥σmin(Σ1)σmin(U11)σmin(V11)σmin(M̂ᵀM)σmin(N̂ᵀN) ≥ 44

45
σr(A)σmin(U11)σmin(V11), (41)

‖B−1
M ‖ = σ−1

min(BM) ≤ 45

44σr(A)σmin(U11)σmin(V11)
, (42)

Â22 = (BL + EL)(BM + EM)−1(BR + ER), BLB
−1
M BR = U21Σ1V

ᵀ
21, (43)

‖BLB
−1
M ‖ =‖U21Σ1(V ᵀ11N̂)(V ᵀ11N̂)−1Σ−1(M̂ᵀU11)−1‖ = ‖U21(M̂ᵀU11)−1‖

≤‖(M̂ᵀMMᵀU11)−1‖ ≤ 1

σmin(MᵀU11)σmin(M̂ᵀM)
≤
√

45/44

σmin(U11)
,

(44)

‖B−1
M BR‖ = ‖(V11N̂)−1V ᵀ21‖ ≤

√
45/44

σmin(V11)
. (45)

By (39), (41) and the assumption (10), we can see σmin(BM) > ‖EM‖, so

Â22
(43)
= (BL + EL)(B−1

M −B
−1
M EMB

−1
M +B−1

M EMB
−1
M EMB

−1
M − · · · )(BR + ER);

12



‖Â22 −BLB
−1
M BR‖q ≤

∥∥BLB
−1
M EM

∞∑
i=0

(−B−1
M EM)iB−1

M BR

∥∥
q

+
∥∥EL ∞∑

i=0

(−B−1
M EM)iB−1

M BR

∥∥
q

+
∥∥BLB

−1
M

∞∑
i=0

(−EMB−1
M )iER

∥∥
q

+
∥∥ELB−1

M

∞∑
i=0

(−EMB−1
M )iER

∥∥
q

≤‖BLB
−1
M ‖‖EM‖q

∞∑
i=0

‖EM‖i‖B−1
M ‖

i‖B−1
M BR‖+ ‖EL‖q

∞∑
i=0

‖B−1
M ‖

i‖EM‖i‖B−1
M BR‖

+ ‖BLB
−1
M ‖

∞∑
i=0

‖EM‖i‖B−1
M ‖

i‖ER‖q + ‖EL‖
∞∑
i=0

‖B−1
M ‖

i+1‖EM‖i‖ER‖q

(39)(40)

≤ ‖BLB
−1
M ‖‖B

−1
M BR‖+ ‖B−1

M BR‖+ ‖BLB
−1
M ‖+ ‖B−1

M ‖σr+1(A)

1− σr+1(A)‖B−1
M ‖

‖Σ2‖q

(44)(45)

≤ 1

1− σr+1(A)‖B−1
M ‖

(
45/44

σmin(U11)σmin(V11)
+

√
45/44

σmin(U11)
+

√
45/44

σmin(V11)
+

45

88

)
‖Σ2‖q

≤
‖A−max(r)‖q

1− 45σr+1(A)
44σr(A)σmin(U11)σmin(V11)

(
45/44

σmin(U11)σmin(V11)
+

√
45/44

σmin(U11)
+

√
45/44

σmin(V11)
+

45

88

)

≤88

43
‖A−max(r)‖q

(
45/44

σmin(U11)σmin(V11)
+

√
45/44

σmin(U11)
+

√
45/44

σmin(V11)
+

45

88

)
.

Finally, since A22 = U21Σ1V
ᵀ

21 + U22Σ2V
ᵀ

22

(43)
= BLB

−1
M BR + U22Σ2V

ᵀ
22, we have

‖Â22 − A22‖q ≤‖Â22 −BLB
−1
M BR‖q + ‖U22Σ2V

ᵀ
22‖q

≤3‖A−max(r)‖q
(

1 +
1

σmin(U11)

)(
1 +

1

σmin(V11)

)
. �

Proof of Theorem 2

We only present proof for row thresholding as the column thresholding is essentially the same

by working with AT . Suppose M,N are orthonormal basis of column vectors of U11, V11.

We denote U
(1)
[:,1:r] = M̂ , V

(2)
[:,1:r] = N̂ , which are exactly the same as the M̂ and N̂ in Algo-

rithm 1. Similarly to the proof of Theorem 1, we have (35). Due to the assumption that

σr(A)σmin(U11)σmin(V11) ≥ 4σr+1(A), (35) yields

σ2
min(M̂ᵀM) ≥ 3824/3825, σ2

min(N̂ᵀN) ≥ 3824/3825. (46)

As shown in the Supplementary material, we have

13



Lemma 7 Under the assumption of Theorem 2, we have r̂ ≥ r.

We next show (13) with the condition that r̂ ≥ r in steps.

1. Note that A11 = U11Σ1V
ᵀ

11 + U12Σ2V
ᵀ

12, we consider the decompositions of Z and let

Z11 = U (2)ᵀU11Σ1V
ᵀ

11V
(1) + U (2)ᵀU12Σ2V

ᵀ
12V

(1),

Z11,[1:r̂,1:r̂] = U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂] + U

(2)ᵀ
[:,1:r̂]U12Σ2V

ᵀ
12V

(1)
[:,1:r̂] , BM,r̂ + EM,r̂, (47)

Z21,[:,1:r̂] = U21Σ1V
ᵀ

11V
(1)

[:,1:r̂] + U22Σ2V
ᵀ

12V
(1)

[:,1:r̂] , BL,r̂ + EL,r̂, (48)

Z12,[1:r̂,:] = U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
21 + U

(2)ᵀ
[:,1:r̂]U12Σ2V

ᵀ
22 , BR,r̂ + ER,r̂. (49)

Note that the square matrix U
(2)ᵀ
[:,1:r]M ∈ Rr×r is a submatrix of U

(2)ᵀ
[:,1:r̂]M ∈ Rr̂×r, we know

σmin(U
(2)ᵀ
[:,1:r̂]M) ≥ σmin(U

(2)ᵀ
[:,1:r]M) = σmin(M̂M)

(46)

≥
√

3824

3825
. (50)

Similarly, σmin(V
(1)ᵀ

[:,1:r̂]N) ≥
√

3824
3825

. By M,N are the orthonormal basis of column vectors of

U11, V11, we have PM = MMᵀ, PN = NNᵀ, and

σmin(U
(2)ᵀ
[:,1:r̂]U11) ≥σmin(U

(2)ᵀ
[:,1:r̂]M)σmin(MᵀU11) ≥

√
3824

3825
σmin(U11); (51)

similarly, we also have

σmin(V
(1)ᵀ

[:,1:r̂]V11) ≥
√

3824

3825
σmin(V11). (52)

(51) and (52) immediately yield

σr(BM,r̂) ≥
3824

3825
σmin(U11)σmin(Σ1)σmin(V11) =

3824

3825
σr(A)σmin(U11)σmin(V11). (53)

Besides, we also have

‖EM,r̂‖
(47)

≤ ‖Σ2‖ = σr+1(A) (54)

2. Next, we consider the SVD of Z11,[1:r̂,1:r̂]

Z11,[1:r̂,1:r̂] = JΛKᵀ, J,Λ, K ∈ Rr̂×r̂. (55)
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For convenience, we denote Λ1 = Λ[1:r,1:r],Λ2 = Λ[(r+1):r̂,(r+1):r̂],

J1 = J[:,1:r], J2 = J[:,(r+1):r̂], K1 = K[:,1:r], K2 = K[:,(r+1):r̂], (56)

Suppose MZ ∈ Rr̂×r is an orthonormal basis of the column space of BM,r̂; NZ ∈ Rr̂×r is

an orthonormal basis of the column space of BᵀM,r̂. Denote span(·) as the linear span of

the column space of the matrix. We want to show span(MZ) is close to span(J1); while

span(NZ) is close to span(K1). So in the rest of this step, we try to establish bounds for

σmin(Jᵀ1MZ) and σmin(Kᵀ1NZ). Actually,

Z11,[1:r̂,1:r̂] = BM,r̂ + EM,r̂ = (BM,r̂ + PMZ
EM,r̂) + PM⊥ZEM,r̂.

Now we set X = (BM,r̂ + PMZ
EM,r̂), Y = PM⊥ZEM,r̂, then we have

σr(X) ≥σr(BM,r̂)− ‖PMZ
EM,r̂‖

(53)

≥ 3824

3825
σr(A)σmin(U11)σmin(V11)− σr+1(A),

(12)

≥ σr+1(A)
(54)

≥ ‖EM,r̂‖ ≥ ‖Y ‖.

Besides, by the definition of BM,r̂ and MZ we know rank(X) ≤ r. Also based on the

definition of Y , we know PXY = 0. Now the unilateral perturbation bound in Cai and

Zhang (2014) yields

σ2
min(Mᵀ

ZJ1) ≥ 1−
(

σr(X) · ‖Y ‖
σ2
r(X)− ‖Y ‖2

)2

. (57)

The right hand side of the inequality above is an increasing function of σr(X). Since

σr(X) ≥ 3824
3825

σr(A)σmin(U11)σmin(V11)− σr+1(A) ≥ (3− 4
3825

)σr+1(A) ≥ (3− 4
3825

)‖Y ‖,

σ2
min(Jᵀ1MZ) ≥ 1−

(
3− 4/3825

(3− 4/3825)2 − 1

)2

≥ 0.859. (58)

Similarly, we also have

σ2
min(Kᵀ1NZ) ≥ 0.859. (59)

3. We next derive useful expressions of A22 and Â22. First we introduce the following quantities,

Jᵀ1Z11,[1:r̂,1:r̂]K1
(47)
= Jᵀ1BM,r̂K1 + Jᵀ1EM,r̂K1 , BM1 + EM1, (60)
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Jᵀ2Z11,[1:r̂,1:r̂]K2
(47)
= Jᵀ2BM,r̂K2 + Jᵀ2EM,r̂K2 , BM2 + EM2, (61)

Z21,[:,1:r̂]K1
(48)
= BL,r̂K1 + EL,r̂K1 , BL1 + EL1, (62)

Z21,[:,1:r̂]K2
(48)
= BL,r̂K2 + EL,r̂K2 , BL2 + EL2, (63)

Jᵀ1Z12,[1:r̂,:]
(49)
= Jᵀ1BR,r̂ + Jᵀ1ER,r̂ , BR1 + ER1, (64)

Jᵀ2Z11,[1:r̂,:]
(49)
= Jᵀ2BR,r̂ + Jᵀ2ER,r̂ , BR2 + ER2. (65)

Since

BL1B
−1
M1BR1 = BL,r̂K1 (Jᵀ1BM,r̂K1)−1 Jᵀ1BR,r̂

=U21Σ1V
ᵀ

11V
(1)

[:,1:r̂]K1

(
Jᵀ1U

(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂]K1

)−1

Jᵀ1U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
21 = U21Σ1V

ᵀ
21,

(66)

we can characterize A22, Â22 by these new notations as

A22 = U21Σ1V
ᵀ

21 + U22Σ2V
ᵀ

22

(66)
= BL1B

−1
M1BR1 + U22Σ2V

ᵀ
22, (67)

Â22 =Z21,[:,1:r̂]Z
−1
11,[1:r̂,1:r̂]Z12,[1:r̂,:]

(55)
= Z21,[:,1:r̂]K

(
JᵀZ11,[1:r̂,1:r̂]K

)−1
JᵀZ12,[1:r̂,:]

=
(
Z21,[1:r̂]K1 + Z21,[1:r̂]K2

) (
Jᵀ1Z11,[1:r̂,1:r̂]K1 + Jᵀ2Z11,[1:r̂,1:r̂]K2

)−1 (
Jᵀ1Z12,[1:r̂] + Jᵀ2Z12,[1:r̂]

)
(60)−(65)

=
2∑

k=1

(BLk + ELk)(BMk + EMk)
−1(BRk + ERk) (68)

4. We now establish a number of bounds for the terms on the right hand side of (60)-(65).

Lemma 8 Based on the assumptions above, we have

σmin(BM1) ≥ 3.43σr+1(A); (69)

‖BL1B
−1
M1‖ ≤

√
3825/3824√

0.859σmin(U11)
, ‖B−1

M1BR1‖ ≤
√

3825/3824√
0.859σmin(V11)

, (70)

‖EMt‖q ≤ ‖A−max(r)‖q, ‖ELt‖q ≤ ‖A−max(r)‖q, ‖ERt‖q ≤ ‖A−max(r)‖q, t = 1, 2, (71)

‖(BL2 + EL2)(BM2 + EM2)−1‖ ≤ TR +
1

1− 1/3.43

( √
3825/3824√

0.859σmin(U11)
+

1

3.43

)
, (72)

‖BR2‖q ≤
2
√

3825/3824√
0.859σmin(V11)

‖A−max(r)‖q. (73)
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The proof of Lemma 8 is given in the Supplement.

5. We finally give the upper bound of ‖Â22−A22‖q. By (67) and (68), we can split the loss as,

Â22 − A22 =
(
(BL1 + EL1) (BM1 + EM1)−1 (BR1 + ER1)−BL1B

−1
M1BR1

)
+ (BL2 + EL2) (BM2 + EM2)−1 (BR2 + ER2)− U22Σ2V

ᵀ
22.

(74)

We will analyze them separately. First, ‖U22Σ2V
ᵀ

22‖q ≤ ‖A−max(r)‖q; second,

‖(BL2 + EL2)(BM2 + EM2)−1(BR2 + EM2)‖q

≤‖(BL2 + EL2)(BM2 + EM2)−1‖ · (‖BR2‖q + ‖EM2‖q)

(72)(73)

≤

(
TR +

3.43

2.43

( √
3825/3824√

0.859σmin(U11)
+

1

3.43

))(
2
√

3825/3824√
0.859σmin(V11)

+ 1

)
‖A−max(r)‖q

≤
(
TR +

1.524

σmin(U11)
+ 0.412

)(
2.16

σmin(V11)
+ 1

)
‖A−max(r)‖q. (75)

The analysis of
(
(BL1 + EL1) (BM1 + EM1)−1 (BR1 + ER1)−BL1B

−1
M1BR1

)
is similar to the

proof of Theorem 1. We have

∥∥(BL1 + EL1)(BM1 + EM1)−1(BR1 + ER1)−BL1B
−1
M1BR1

∥∥
q

≤

∥∥∥∥∥BL1(B−1
M1EM1

∞∑
i=0

(−B−1
M1EM1)iB−1

M1)BR1

∥∥∥∥∥
q

+

∥∥∥∥∥EL1

(
∞∑
i=0

(−B−1
M1EM1)iB−1

M1

)
BR1

∥∥∥∥∥
q

+

∥∥∥∥∥BL1

(
B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

)
ER1

∥∥∥∥∥
q

+

∥∥∥∥∥EL1

(
B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

)
ER1

∥∥∥∥∥
q

≤‖BL1B
−1
M1‖‖EM1‖q

∞∑
i=0

‖EM1‖i‖B−1
M1‖

i‖B−1
M1BR1‖+ ‖EL1‖q

∞∑
i=0

‖B−1
M1‖

i‖EM1‖i‖B−1
M1BR1‖

+ ‖BL1B
−1
M1‖

∞∑
i=0

‖EM1‖i‖B−1
M1‖

i‖ER1‖q + ‖EL1‖
∞∑
i=0

‖B−1
M1‖

i+1‖EM1‖i‖ER1‖q

(71)

≤ ‖Σ2‖q
1− σr+1(A)‖B−1

M1‖
(
‖BL1B

−1
M1‖‖B

−1
M1BR1‖+ ‖B−1

M1BR1‖+ ‖BL1B
−1
M1‖+ ‖B−1

M1‖σr+1(A)
)

(70)(69)

≤
(

1.65

σmin(U11)σmin(V11)
+

1.53

σmin(V11)
+

1.53

σmin(V11)
+ 0.42

)
‖A−max(r)‖q. (76)
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From (75), (76), (74), and the fact that σmin(U11) ≤ 1 and TR ≥ 1.36
σmin(U11)

+ 0.35,

‖Â22 − A22‖q ≤
(

2.16TR +

(
4.95

σmin(U11)
+ 2.42

))(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q

≤
(

2.16TR + 4.31

(
1.36

σmin(U11)
+ 0.35

))(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q

≤6.5TR

(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q.

(77)

This concludes the proof. �

Proof of Lemma 7.

In order to prove this lemma, we just need to prove that the for-loop in Algorithm 2 will break

for some s ≥ r. This can be shown by proving the break condition

‖DR,s‖ = ‖Z21,[1:s]Z
−1
11,[1:s,1:s]‖ ≤ TR, (78)

hold for s = r.

We adopt the definitions in (36), (37), (38), then we have

Z11,[1:r,1:r] = U
(2)ᵀ
[:,1:r]A11V

(1)
[:,1:r] = M̂ᵀA11N̂

= M̂ᵀU11Σ1V
ᵀ

11N̂ + M̂ᵀU12Σ2V
ᵀ

12N̂

= BM + EM ,

Z21,[:,1:r] = A21V
(1)

[:,1:r] = (U21Σ1V
ᵀ

11 + U22Σ2V
ᵀ

12) N̂ = BL + EL.

Hence,∥∥∥Z21,[:,1:r]Z
−1
11,[1:r,1:r]

∥∥∥ =‖(BL + EL)(BM + EM)−1‖

≤

∥∥∥∥∥BLB
−1
M

∞∑
i=0

(−EMB−1
M )i

∥∥∥∥∥+

∥∥∥∥∥ELB−1
M

∞∑
i=0

(−EMB−1
M )i

∥∥∥∥∥
≤
(
‖BLB

−1
M ‖+ ‖EL‖‖B−1

M ‖
) 1

1− ‖EMB−1
M ‖

(41),(70)

≤

( √
45/44

σmin(U11)
+

45σr+1(A)

44σr(A)σmin(U11)σmin(V11)

)
1

1− 45σr+1(A)
44σr(A)σmin(U11)σmin(V11)

≤ 1.36

σmin(U11)
+ 0.35 ≤ TR,
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which finished the proof of the lemma. �

Proof of Lemma 8.

First, since MZ ∈ Rr̂×r and NZ ∈ Rr̂×r are an orthonormal basis of BM,r̂ and BᵀM,r̂, we have

PMZ
= MZM

ᵀ
Z and PNZ

= NZN
ᵀ
Z and

σmin(BM1) =σmin(Jᵀ1BM,r̂K1) = σmin(Jᵀ1MZM
ᵀ
ZBM,r̂NZN

ᵀ
ZK1)

≥σmin(Jᵀ1MZ)σmin(Mᵀ
ZBM,r̂NZ)σmin(NᵀZK1)

(58)(59)

≥ 0.859σr(BM,r̂)
(53)

≥ 0.859 · 3824

3825
σr(A)σmin(U11)σmin(V11)

(12)

≥ 3.43σr+1(A).

(79)

which gives (69).

‖BL1B
−1
M1‖ =

∥∥∥BL,r̂K1 (Jᵀ1BM,r̂K1)−1
∥∥∥

=

∥∥∥∥U21Σ1V
ᵀ

11V
(1)

[:,1:r̂]K1

(
Jᵀ1U

(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂]K1

)−1
∥∥∥∥ =

∥∥∥∥U21

(
Jᵀ1U

(2)ᵀ
[:,1:r̂]U11

)−1
∥∥∥∥

≤ 1

σmin(Jᵀ1U
(2)ᵀ
[:,1:r̂]U11)

=
1

σmin(Jᵀ1PMZ
(U

(2)ᵀ
[:,1:r̂]U11))

=
1

σmin((Jᵀ1MZ)(Mᵀ
ZU

(2)ᵀ
[:,1:r̂]U11))

≤ 1

σmin(Jᵀ1MZ)
· 1

σmin(U
(2)ᵀ
[:,1:r̂]U11)

(51)(58)

≤
√

3825/3824√
0.859σmin(U11)

,

(80)

which gives the first part of (70). Here we used the fact that Σ1V
ᵀ

11V
(1)

[:,1:r̂]K1 is a square

matrix; MZ is the orthonormal basis of the column space of Z11,[1:r̂,1:r̂] = U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂].

Similarly we have the later part of (70),

‖B−1
M1BR1‖ ≤

√
3825/3824√

0.859σmin(V11)
. (81)

Based on the definitions, we have the bound for all “ E” terms in (60)-(65), i.e. (71). Now

we move on to (72). By the SVD of Z11,[1:r̂,1:r̂] (55) and the partition (56), we know

(
[J1 J2]ᵀZ11,[1:r̂,1:r̂][K1 K2]

)−1
=

Λ1 0

0 Λ2

−1

=

(Jᵀ1Z11,[1:r̂,1:r̂]K1

)−1
0

0
(
Jᵀ2Z11,[1:r̂,1:r̂]K2

)−1

 .
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Hence, we have∥∥(BL2 + EL2)(BM2 + EM2)−1
∥∥ =

∥∥∥Z21,[:,1:r̂]K2

(
Jᵀ2Z11,[1:r̂,1:r̂]K2

)−1
∥∥∥

=
∥∥∥Z21,[:,1:r̂][K1 K2]

(
[J1 J2]ᵀZ11,[1:r̂,1:r̂][K1 K2]

)−1 − Z21,[1:r̂]K1

(
Jᵀ1Z11,[1:r̂,1:r̂]K1

)−1
∥∥∥

≤
∥∥∥Z21,[:,1:r̂]

(
Z11,[1:r̂,1:r̂]

)−1
∥∥∥+

∥∥(BL1 + EL1)(BM1 + EM1)−1
∥∥

≤TR +

∥∥∥∥∥BL1 ·B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

∥∥∥∥∥+

∥∥∥∥∥EL1 ·B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

∥∥∥∥∥
≤TR +

(
‖BL1B

−1
M1‖+ ‖EL1‖‖B−1

M1‖
) 1

1− ‖EM1‖‖B−1
M1‖

(69)(70)(71)

≤ TR +

( √
3825/3824√

0.859σmin(U11)
+

1

3.43

)
· 1

1− 1/3.43
,

(82)

which proves (72). Since Z11,[1:r̂,1:r̂] = BM,r̂ + EM,r̂ and by definition, rank(BM,r̂) ≤ r, by

Lemma 1, we know

σr+i(Z11,[1:r̂,1:r̂]) ≤ σi(EM,r̂), ∀i ≥ 1. (83)

Then

‖BM2‖q ≤‖BM2 + EM2‖q + ‖EM2‖q ≤ ‖Jᵀ2Z11,[1:r̂,1:r̂]K2‖q + ‖EM2‖q

= q

√√√√ r̂∑
i=r+1

σqi (Z11,[1:r̂,1:r̂]) + ‖EM2‖q ≤ q

√√√√ r̂−r∑
i=1

σqi (EM,r̂) + ‖EM2‖q

≤‖EM,r̂‖q + ‖EM2‖q
(71)

≤ 2‖A−max(r)‖q.

(84)

Same to the process of (80), we know

1

σmin(V ᵀ11V
(1)

[:,1:r̂]K1)
≤

√
3825/3824√

0.859σmin(V11)
. (85)

Also, ‖V ᵀ21‖ ≤ 1. Hence,

‖BR2‖q
(65)
= ‖Jᵀ2BR,r̂‖q = ‖Jᵀ2U

(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
21‖q

=‖Jᵀ2U
(2)ᵀ
[:,1:r̂]U11Σ1(V ᵀ11V

(1)
[:,1:r̂]K1)(V ᵀ11V

(1)
[:,1:r̂]K1)−1V ᵀ21‖q

≤‖BM2‖q · ‖(V ᵀ11V
(1)

[:,1:r̂]K1)−1‖ · ‖V ᵀ21‖
(84)(85)

≤
2
√

3825/3824√
0.859σmin(V11)

‖A−max(r)‖q.

(86)
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which proves (73). �

Proof of Theorem 3.

The idea of proof is to construct two matrices A(1), A(2) both in Fc(M1,M2) such that they

have the identical first m1 rows and m2 columns, but differ much in the remaining block.

Suppose a, b, c > 0 are fixed numbers, ε is a small real number. We first consider the following

2-by-2 matrix

B(ε) =

a c

b bc
a

+ ε

 . (87)

Suppose the larger and smaller singular value of B(ε) are λmax(ε) and λmin(ε), then we have

λmax(ε)→ ‖B(0)‖ =

√
(a2 + b2)(a2 + c2)

a
(88)

as ε→ 0; since λmax(ε) · λmin(ε) = |det(B)| = a|ε|, we also have

λmin(ε)/|ε| → a2√
(a2 + b2)(a2 + c2)

(89)

as ε→ 0. If B(ε) defined in (87) has SVD

B(ε) =

u11 u12

u21 u21

 ·
λmax(ε) 0

0 λmin(ε)

 ·
v11 v12

v21 v21

ᵀ (90)

then we also have

u11 →
a√

a2 + b2
, u21 →

b√
a2 + b2

, v11 →
a√

a2 + c2
, v21 →

c√
a2 + c2

. (91)

as ε→ 0.

Now we set a = 1, b =
√

1−M2
1/M1 − η, c =

√
1−M2

2/M2 − η, d = bc/a, where η is

some small positive number to be specify later. We construct A11, A12, A21, A
(1)
22 and A

(2)
22 such

that,

A11 =

aIr 0

0 0


m1×m2

, A12 =

cIr 0

0 0


m1×(p2−m2)

, A21 =

bIr 0

0 0


(p1−m1)×m2

; (92)
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A
(1)
22 =

(d+ ε)Ir 0

0 0


(p1−m1)×(p2−m2)

, A
(2)
22 =

(d− ε)Ir 0

0 0


(p1−m1)×(p2−m2)

. (93)

Here we use Ir to note the identity matrix of dimension r. Then we construct A(1) and A(2)

as

A(1) =

A11 A12

A21 A
(1)
22

 , A(2) =

A11 A12

A21 A
(2)
22

 , (94)

where A(1) and A(2) are with identical first m1 rows and m2 columns. Since the SVD of B(ε)

is given as (90), the SVD of A(1) can be written as

A(1) =

U (1)
11 U

(1)
12

U
(1)
21 U

(1)
22

 ·
Σ

(1)
1 0

0 Σ
(1)
2

 ·
V (1)

11 V
(1)

12

V
(1)

21 V
(1)

22

ᵀ ,
where

U11 =

u11Ir

0


m1×r

, U12 =

u12Ir

0


m1×r

, U21 =

u21Ir

0


(p1−m1)×r

, U22 =

u22Ir

0


(p1−m1)×r

;

V11 =

v11Ir

0


m2×r

, V12 =

v12Ir

0


m2×r

, V21 =

v21Ir

0


(p2−m2)×r

, V22 =

v22Ir

0


(p2−m2)×r

;

Σ1 = λmax(ε)Ir, Σ2 = λmin(ε)Ir.

Hence,

σmin(U11) = u11 =
a√

a2 + b2
→ 1

1 +

(√
1−M2

1

M1
− η
)2 > M1, as ε→ 0

σmin(V11) = v11 =
a√

a2 + c2
→ 1

1 +

(√
1−M2

2

M2
− η
)2 > M2, as ε→ 0.

Also, ‖Σ(1)
2 ‖ → 0 as ε→ 0. So we have A(1) ∈ Fr(M1,M2) when ε is small enough. Similarly

A(2) ∈ Fr(M1,M2) when ε is small enough. Now we also have ‖A(1)
−max(r)‖q = (qλmin(ε)q)1/q =

q1/qλmin(ε), ‖A(2)
−max(r)‖q = (qλmin(−ε)q)1/q = q1/qλmin(−ε). ‖A(1)

22 − A
(2)
22 ‖q = (q(2|ε|)q)1/q =

2|ε|q1/q.
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Finally for any estimate Â22, we must have

max

{
‖Â22 − A(1)

22 ‖q
‖A(1)
−max(r)‖q

,
‖Â22 − A(2)

22 ‖q
‖A(2)
−max(r)‖q

}
≥

1
2

∥∥∥(Â22 − A(1)
22

)
−
(
Â22 − A(2)

22

)∥∥∥
q

min
{
‖A(1)
−max(r)‖q, ‖A

(2)
−max(r)‖q

}
≥ 2|ε|

2 min {λmin(ε), λmin(−ε)}
(89)→

√
(a2 + b2)(a2 + c2)

a2

=

√√√√(1 + (

√
1−M2

1

M1

− η)2

)(
1 + (

√
1−M2

2

M2

− η)2

)
(95)

as ε→ 0. Since A(1), A(2) ∈ Fr(M1,M2) and are with identical first m1 rows and m2 columns,

we must have

inf
Â22

sup
A∈Fr(M1,M2)

‖Â22 − A22‖q
‖A−max(r)‖q

≥

√√√√(1 + (

√
1−M2

1

M1

− η)2

)(
1 + (

√
1−M2

2

M2

− η)2

)
.

Let η → 0, since M1,M2 < 1, we have

inf
Â22

sup
A∈Fr(M1,M2)

‖Â22 − A22‖q
‖A−max(r)‖q

≥ 1

M1M2

≥ 1

4

(
1

M1

+ 1

)(
1

M2

+ 1

)
, (96)

which finished the proof of theorem. �

Proof of Corollary 1.

We first prove the second part of the corollary. We set α = (136/165)2. Since U[:,1:r] ∈ Rp1×r

is with orthonormal columns, by Lemma 5 and

m1 ≥ 12.5W (1)
r r(log r + c) ≥ 4

(1− α)2
·W (1)

r r(log r + c),

we have

σmin(U11) = σmin(U[Ω1,1:r]) ≥
√
αm1

p1

(97)

with probability at least 1− 2 exp(−c). When (97) holds, by the condition, we know

σr+1(A) ≤ σr(A)σmin(V11)
1

5

√
m1

p1

≤ σr(A)σmin(V11)
1

5
√
α
· σmin(U11) ≤ 1

4
σr(A)σmin(V11)σmin(U11).
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When TR ≥ 2
√
p1/m1, we have

1.36

σmin(U11)
+ 0.35 ≤ 1.36

√
p1

αm1

+ 0.35 ≤ 2

√
p1

m1

≤ TR

Hence we can apply Theorem 2, for 1 ≤ q ≤ ∞ we must have∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5TR

∥∥A−max(r)

∥∥
q

(
1

σmin(V11)
+ 1

)
, (98)

which finishes the proof of the second part of Corollary 1. Besides, the proof for the third

part is the same as the second part after we take the transpose of the matrix.

For the first part, the proof is also similar. Again we set α = (136/165)2. Then we have

m1 ≥
4

(1− α)2
W (1)
r r(log r + c), m2 ≥

4

(1− α)2
W (2)
r r(log r + c),

so

σmin(U11) = σmin(U[Ω1,1:r]) ≥
√
αm1

p1

, σmin(V11) = σmin(V[Ω2,1:r]) ≥
√
αm2

p2

(99)

with probability at least 1− 4 exp(−c). When (99) holds, we have

σr+1(A) ≤ σr(A)
1

6

√
m1m2

p1p2

≤ σr(A)
1

6α
σmin(U11)σmin(V11) ≤ 1

4
σr(A)σmin(V11)σmin(U11).

When TR = 2
√
p1/m1 or TC = 2

√
p2/m2, similarly to the first part we have

1.36

σmin(U11)
+ 0.35 ≤ TR, or

1.36

σmin(V11)
+ 0.35 ≤ TC .

Hence we can apply Theorem 2 and get∥∥∥Â22 − A22

∥∥∥
q
≤6.5TR‖A−max(r)‖q

(
1

σmin(V11)
+ 1

)
≤ 6.5 · 2

√
p1

m1

·
(√

p2

αm2

+ 1

)
‖A−max(r)‖q

≤29‖A−max(r)‖q
√

p1p2

m1m2

.

�

Proof of Corollary 2.

Suppose 0 < α1 < 1, since U[:,1:r] ∈ R is with random orthonormal columns of Haar measure,

we can apply Lemma 6 and find some c > 0 and δ > 0 such that when p1 ≥ m1 ≥ cr,

σmin(U11) = σmin(U[1:m1,1:r]) ≥
136

165

√
m1

p1

(100)
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with probability at least 1− exp(−δm1). When (100) happen, we have

σr+1(A) ≤ σr(A)σmin(V11)
1

5

√
m1

p1

≤ σr(A)σmin(V11)σmin(U11),

1.36

σmin(U11)
+ 0.35 ≤ 1.36 · 165

136

√
p1

m1

+ 0.35 ≤ 2

√
p1

m1

.

Hence we can apply Theorem 2, for 1 ≤ q ≤ ∞, we have∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5TR

∥∥A−max(r)

∥∥
q

(
1

σmin(V11)
+ 1

)
, (101)

which finishes the proof of the corollary. �

3.1 Description of Cross-Validation

In this section, we describe the cross-validation used in penalized nuclear norm minimization

(4) in the numerical comparison in Sections 4 and 5.

First, we construct a grid T of non-negative numbers based on a pre-selected positive

integer N . Denote

tPNmax =

∥∥∥∥∥∥
A11 A12

A21 0

∥∥∥∥∥∥ ,
i.e. the largest singular value of the observed blocks. For penalized nuclear norm minimization,

we let T =
{
tPNmax, t

PN
max · 10−3(1/N), · · · , tPNmax · 10−3(N/N)

}
.

Next, for a given positive integer K, we randomly divide the integer set {1, · · · ,m1} into

two groups of size m(1) ≈ (K−1)n
K

, m(2) ≈ n
K

for H times. For h = 1, · · · , H, we denote

by Jh1 and Jh2 ⊆ {1, 2, · · · ,m1} the index sets of the two groups for the h-th split. Then

the penalized nuclear norm minimization estimator (4) is applied to the first group of data:

A11, A21, (A12)[Jh
1 ,:]

, i.e. the data of the observation set Ω = {(i, j) : 1 ≤ j ≤ m2, or i ∈

Jh1 ,m2 + 1 ≤ j ≤ p2}, with each value of the tuning parameter t ∈ T and denote the result

by ÂPNh (t). Note that we did not use the observed block A[Jh
2 ,(m2+1):p2] in calculating ÂPNh (t).

Instead, A[Jh
2 ,(m2+1):p2] is used to evaluate the performance of the tunning parameter t ∈ T .
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Set

R̂(t) =
1

H

H∑
h=1

∥∥∥∥[ÂPNh (t)
]

[Jh
2 ,(m2+1):p2]

− A[Jh
2 ,(m2+1):p2]

∥∥∥∥2

F

. (102)

Finally, the tuning parameter is chosen as

t∗ = arg min
t∈T

R̂(t)

and the final estimator ÂPN is calculated using this choice of the tuning parameter t∗.

In all the numerical studies with penalized nuclear norm minimization in Sections 4 and

5, we use 5-cross-validation (i.e., K = 5), N = 10 to select the tuning parameter.
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