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Abstract

In this supplement we provide additional simulation results and the proofs of the main
theorems. Some key technical tools used in the proofs of the main results are also developed

and proved.

1 Additional Simulation Results

We consider the effect of the number of the observed rows and columns on the estimation
accuracy. We let p; = py = 1000, let the singular values of A be {j71,j = 1,2,...} and let
my and my vary from 10 to 210. The singular spaces U and V' are again generated randomly
from the Haar measure. The estimation errors of As, from Algorithm 2 with row thresholding
and Tg = 24/p1/m; over different choices of m; and my are shown in Figure 1. As expected,
the average loss decreases as my or ms grows. Another interesting fact is that the average
loss is approximately symmetric with respect to m; and msy. This implies that even with
different numbers of observed rows and columns, Algorithm 2 has similar performance with

row thresholding or column thresholding.
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(a) Spectral norm loss (b) Frobenious norm loss
Figure 8: Losses for the settings with singular values of A being {j7,j =1,2,...}, p1 = p2 =

1000, mi, Mo = 10, ,210

We are also interested in the performance of Algorithm 2 as p; and the ratio my/p; vary.
To this end, we consider the setting where p, = 1000, mo = 50, and the singular values of A
are chosen as {j7',7 = 1,2,...}. The results are shown in Figure 9. It can be seen that when
m1/p1 increases, the recovery is generally more accurate; when m;y/p; is kept as a constant,

the average loss does decrease but not converge to zero as p; increases.

2 Technical Tools

We collect important technical tools in this section. The first lemma is about the inequalities

of singular values in the perturbed matrix.
Lemma 1 Suppose X € RP*" Y € RP*" rank(X) = a, rank(Y') =0,
1. 0a+b+1—r(X + Y) < min(aa+l—r(X)> 0b+1—r(y)) fO’f’ Tz ]-;.

2. if we further have X7Y = 0, we must have a +b <n, 0,(X +Y) > max(o,(X),0,(Y)) for

r>1.
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(a) Spectral norm loss (b) Frobenious norm loss
Figure 9: Losses for settings with singular values of A being {;71,j = 1,2,3...}, p» = 1000,

ms = 50, my/p1 = 1/4,1/12,1/20,1/28,1/36, and p; = 100, ..., 100, 000.

Lemma 2 Suppose X € RP*™ Y € R™™™ are two arbitrary matrices, denote || - ||, || - || as

the Schatten-g norm and spectral norm respectively, then we have
[ XYlg < N1 XTlq - Y] (22)
The following two lemmas provide examples that illustrate NNM fails to recover Ay,

Lemma 3 Assume A = BBl where By € RP"*" and By € RP?*" qare two i.i.d. standard

Gaussian matrices. Let A is divided into blocks as (1). Suppose

1

1 1
"< 100 min(py, p2), ™M1 < 5ePL M2 S Py, (23)

then the NNM (3) fails to recover Agy with probability at least 1 — 12 exp(— min(py, p2)/400).

Lemma 4 Denote 1, as the p-dimensional vector with all entries 1. Suppose A =1, - 1T ,

and A is divided into blocks as (1). Then the NNM (3) yields

~ . mimes
Ayy = 11, 10 .
# mm{\/(Pl—ml)(Pz—mz)’ } P e

The following result is on the norm of a random submatrix of a given orthonormal matrix.




Lemma 5 Suppose U € RP*¢ is a fized matriz with orthonormal columns (hence d < p).
Denote W = maxi<i<p & - Z;l:l ufj Suppose we uniform randomly draw n rows (with or
without replacement) from U and note the index as 2 and denote
Uoq
Uqg =
Ua(n)

Whennzwforsomeo<a<1 and ¢ > 1, we have

(I=a)?
an
lomin(Ua)ll = 4/ —
p

The following results is about the spectral norm of the submatrix of a random orthonormal

with probability 1 — 2e™°.

matrix.

Lemma 6 Suppose U € RP*? (d < p) is with random orthonormal columns with Haar mea-
sure. For all 0 < ay < 1 < aw, there exists constant C,0 > 0 depending only on oy, oy such

that when p > n > min{Cd, p}, we have

an oM
A/ 7 < Umin(U[lzn,:]) < ||U[1n,]|| < A/ 7 (24)

with probability at least 1 — exp(—on).

Proof of the Technical Lemmas

Proof of Lemma 1.
1. First, by a well-known fact about best low-rank approximation,
g (X+4+Y)= min X+Y - M|.
+o+l ( * ) MeRPX™ rank(M)<a+b—r || + ||
Hence,

o'a+b+1fr<X + Y) < HX +Y — (Xmax(a—'r) + Y)” = HX—max(a—r)H = O-a+1fr(X>;

similarly oq4p41-(X +Y) < 0p1-0(Y).



2. When we further have XT7Y = 0, we know the column space of X and Y are orthogonal,
then we have rank(X +Y) = rank(X) 4 rank(Y) = a + b, which means a + b < n. Next,
note that

(X+Y)(X+Y)=X"X4+YY+XY+YX=X"X+YTY,
if we note \.(-) as the r-th largest eigenvalue of the matrix, then we have
X +HY) =N (X +Y)(X+Y) =\ XX +YTY)
> max( A (XTX), \.(YTY)) = max(c?(X), 0c2(Y)).

g

Proof of Lemma 2. Since

XYl = of S oUXY ), Xy = of S ot(X),

it suffices to show 0;(XY') < 0;(X)||Y||. To this end, we have

o(X) = wmin XY = M| < XY = XY | = X V] < G(OIIY ],

N MeRPX™ rank(M)<i
which finishes the proof of this lemma. [
Proof of Lemma 3. Since B; and B, and their submatrices are all i.i.d. standard matrices,

by the random matrix theory (Corollary 5.35 in Vershynin (2010)), for ¢ > 0, we have with

probability at least 1 — 12 exp(—t?/2), the following inequalities hold,

Ar(A) 2 Amin(B1)Awin(B2) = (V1 — v = t)(y/p2 — V1 — 1)

£ (G- ()
sl = 1B s B < (V4 vF 0T +0) S (jviiee) (Svmee) 20

and

1Azt | =B jmi1):p1 B froms 4| < (VP1+Vr + 0)(Vma +Vr + 1)

(23)

< (%\/p_lth) G\/p_frt) : 0
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Denote

An A
0 =
A21 0
and set ¢ = o min(,/p1, \/p2). Since |[Aglx < [|Ara|lx + [[A21]s, , we have
326 .
P (141 2 285 ) 2 1 - 12exp(-min(ps. ) 400) (29
and
264 .
P (Il < 300V ) 2 1~ 12exp(— minps, ) 40). 29

Hence, with probability at least 1 — 12 exp(— min(py, p2)/400), ||Aoll« < ||A]|+, which implies
that the NNM (3) fails to recover Agy. O

Proof of Lemma 4. For convenience, we denote x Ay = min(x, y) for any two real numbers

- - 1 1 1 1
x,y. First, we can extend the unit vectors mlml, mlmQ, /T 1y, —m, and mlpz,mQ

into orthogonal matrices, which we denote as U,,, € R™>™ U, € R™*™ [, . €

RPr=ma)x(pi=my) rp ¢ RP2=m2)x(p2=m2) - Next, for all Ay, € RP1=m)x(P2=m2) " we must

p
have
All A12 . U;Zl O All AIQ Umg 0
A Al L0 Ulw] A | [0 Upm,
A Ell E12
_E21 Up1 mlAIQQUQ m2

where Eyy € R™*™2 F, € RmxP2=m2) B, ¢ RP1=m1)Xm2 are with the first entry /mima,
v/mi(p2 —msg) and \/ma(p; — my) respectively and other entries 0. Therefore, we can see

Ey Ey 3/ 1Mima my (pz -

>
By U,y A% Upy—m, ma(pr —ma)  [Up, —py A%Upy—mo]y

* *

and the equality holds if and only if U]

on—my AoUp,—m, 18 zero except the first entry.

By some calculation, we can see the nuclear norm of 2-by-2 matrix

1m2 \V m1<p2 - m2)

| ma P1 ml) x

*



achieves its minimum if and only if

= /mamg A/ (p1 —ma)(py — my).

A Ap
Hence, A}, achieves the minimum of if and only if
Ay Agy

*

Vmimsg A \/(p1 —my)(p2 —mz) 0

UZL m1A/22Up2*m2 = 0 0 ’
which means the minimizer A}, = ( g Y ey B 1) Ly mmy Ly, O

Proof of Lemma 5. The proof of this lemma relies on operator-Bernstein’s inequality for
sampling (Theorem 1 in Gross and Nesme (2010)). For two symmetric matrices A, B, we

say A = B if B — A is positive definite. By assumption, {Uq(j)e,j = 1,--- ,n} are uniformly

random samples (with or without replacement) from {Uj,,i = 1,--- ,n}. Suppose
1 .
Xi=UUj@e—-14, i=1,---,p, (30)
p
then X; are symmetric matrices, Xq(j),j = 1,--- ,n are uniformly random samples (with or
without replacement) from {Xj,---,X,}. In addition, we have
1< 1 1 1
EX;j=-Y ULUiw—-I;=-UU~--I;=0
P p°p p

1 wWd
< max maX{HUiT,Ui.H s = HIdH}
1<i<p p

| X1 < max
1<i<p

1
UiUie — =14
p

1< 1 \? 1< 2 1
EX; ==Y (UJ,UZ-. — 2—9!1;) ==Y (UZT,UZ-.UZIUi. — ]—?UZT,Ui. + de>

p =1 p =1
1< 1
== Z 1Uiell5 - UpUse — ]?Id
L1 wd 1 Wd — 1
ZU Uie = 5la = —5—1u
p



For all 0 < a < 1, by Theorem 1 in Gross and Nesme (2010),
an an
<||UQ|| <\ ) =P (UéUa = 7@) - (Z Ui Unge = —Id>
(1—a)n

| (L=a)n/p)* (1- a)n/p
< 2dexp (‘ i <4n(Wd 1) /p2 2Wd/p ))

1— 2
< 2dexp (—%) < 2exp(—c).

The last inequality is due to the assumption that

4Wd(logd + ¢)
n :
- (I-a)?

0

Proof of Lemma 6. By the assumption on n, we have n > p or n > C'd. When n > p, we
know n = p and Up.,,; = U is an orthogonal matrix, which means (24) is clearly true. Hence,
we only need to prove the theorem under the assumption that p > n is true. In this case, we
must have n > Cd.

Since U has random orthonormal columns with Haar measure, for any fixed vector v € R,

Uw is identitical distributed as

|zll3t (21, 29, ,x,), where 21, @ Zrl\gl N(0,1)
Hence, U}, v is identical distributed with ||z||3 " (z1, -+, 2,) and
n P
|Up1n,qv]|2 is identical distributed as (Z xf)(z z?)~1, (31)

which is the also the square root of Beta distribution. Denote

/ 1—|—Ck1 ’ 1+052
Oflz 5 a2: .
2 2

(32)



By Lemma 1 in Laurent and Massart (2000), when 21, --- ,z, are i.i.d. standard normal, we

have

—2/C' < ZZ 1 i <1+2\/5+20’

/ 20"
1-2 ZzlZ<1+2 Cn 2070
P P

both hold with probability at least 1 — 4exp —C'n). Here we let C" > 0 be small enough and

only depending on aq, ay such that

, . 1=2VT L+ 2V0 207 _
o , < (.
L= 149/ 200 1—2C" 2

Combining the previous inequalities and (31), we have for any fixed unit vector v € R,

a'n aln
1 S ||U[1:n7:]v||§ S 2

(33)

with probability at least 1 — 4 exp(—C’n), where C” only depends on o}, of,. Next, based on
Lemma 2.5 in Vershynin (2013), we can construct an e-net on the unit sphere of R? as B,
such that |B| < (1 + 2/¢)?, where ¢ > 0 is to be determined later. Under the event that

{Vv € B, (33) holds}, we suppose

F1 = min HU[ln]”m 2 = max HU[ln vl)3.

For any v in the unit sphere of R? there must exists v' € B such that ||v — /||y < &, which
yields,
HU[l” ]U”? < ||U1n qv 2 + ||U1n v—1")|2 <\ ahn/p + kae

||U[1:n,:]v||2 Z ||U[1:n,:]vll|2 - ||U[1:n,:} (U - U/)HQ Z 0/1”/29 — ERg

These implies that ry < \/ahn/p/(1—¢), k1 > \Jain/p—cka > \J/din/p—/cyn/p-e/(1—¢).
Hence, we can take £ depending on «q, s such that ko < y/agn/p, k1 > \/agn/p, which

implies (24).
Finally we estimate the probability that the event {Vv € B,(33) holds} happens. We
choose C' > 4dlog(1 + 2/¢)/C" that only depends on «; and ay. If n > Cd,

C'n/2 > dlog(1+ 2/e) + log 4.

9



S0
1— (1+2/e)* dexp(—C'n) = 1 — exp(dlog(1 + 2/¢) +log4 — C'n) > 1 — exp(—nC’/2)

Finally, we finish the proof of the lemma by setting 6 = C"/2. O

3 Proofs of the Results in the Main Paper

We prove Proposition 1, Theorems 1 and 2, Lemma 7, Lemma 8, Theorem 3, Corollary 1 and

Corollary 2 in this section.

Proof of Proposition 1

Since A1, is of rank 7, which is the same as A, all rows of A must be linear combinations of the
rows of Aj,. This implies all rows of A, is a linear combination of Ay;. Since rank(Ae;)= 7,
we must have rank(A;;) > r. Besides, rank(A;;) < rank(A) = r since Aj; is a submatrix of

A. So rank(A;;) = r. Simiarly, rows of A,; is the linear combination of Aj;, so we have
Ag = An Pay, = An AT (AnA]) Ay = Ay VEUT(US?UT) Ay = (AnVET'UT) Ay,

namely rows of As; is a linear combination of A;;. By the argument before, we know A,

can be represented as the same linear combination of A5 as Ay by A1, so we have Ay =

(A21VE_1UT) A12 = A21VE_1UTA12 = AQlAJ{lAlQ, which concludes the pI'OOf. ]

Proof of Theorem 1

Suppose M € R"™>*" N € R™*" are column orthonormalized matrices of Uy; and V. M €
R™*" and N € R™2*" are the first r left singular vectors of Aj, and A,q, respectively. Also,

recall that we use Py = U(UTU)TUT to represent the projection onto the column space of U.

1. We first give the lower bound for amin(M TM), amin(N TN) by the unilateral perturbation
bound result in Cai and Zhang (2014). Since,

Py, Are = Py, UnSVT = [Un Sy, Poy USolVT,  Pyi Al = PpaUnSVT = [0, Py U Ss] VT

10



by V' is an orthogonal matrix, we can see
0 (Pryy Ate) = 00([UnX1 Py, UieXs]) > 00(Uni21) > 00 (A)omin(Un1),
[Py Are]| = [Pyt U2 o[ < || Pyt Unal[ 22| < 0741(A).

So 0,(Puy, Ave) 2> || Py Arel|. Besides, rank(Fy,, Are) < r. Apply the unilateral perturbation
bound result in Cai and Zhang (2014) by setting X = P, A1e, Y = Py Aje, we have

mm(

T IV Poll-on(d) )
MIM) 1 (azm) 2o (V) — 2H<A>) | (34

Moreover, Ao = [Uyy Upg|diag(3q,39)VT = [U11 51 U235]VT, and hence,

1Y Pl = || P Ave - Peri, arar

:H[O PriUnSelVT - Prjuysy Py, Unss)t

= sup [0 Py Ur25s] - Poyss, Py, UnaS]7 T
s O

= H [0 PUlll Ul?EQ] : P[UuEl Py, Ur2X2]7
When ||z||; = 1, let y denote the projection of x onto the column space of [U11%1 Py, U12%,]T.
Then ||yl < 1 and y is in the column space of [U;1%; Py,,U1235]|7. Hence,

||y[1:m1}||2 > Umin(UnEl) > Umin(Un)Ur(A)
Hy[(m1+1):pﬂH2 ~ [Py, UreXa| — or41(A)

which implies [|yom, 1113 < 0241(A) /020 (Un1)o2(A) + 02,1 (A). Hence for all z € R

and [|Yimy+1)p 13 + Ymyll3 < 1,

such that ||z]j; =1,

| <Py Vsl [y 102
UT+1(A)
\/‘772~+1 (A) + omin(Un1)o2(A)

— r—‘rl /\/UT+1 A + Urzlin(Ull)o-g(A)' Com-

H[O PriUin¥s] - Puysy Py, Unsa)r®

<o,11(A)

This yields ||Y Px+|| = HPUlLlAl- - Ppy, )

bining (34), we have

ST 31— ( 7?4 (A)

> . (35)
V7 (A) + 02, (Un)o2(A) (02(A)ol, (Un) — 0711 (A))
Since omin(U11)o-(A) > 20,41(A), we have

2 (NTA) > 1 — (L)Z >4

(NTN) Z 44

m1n<

mm

Similarly, we also have o2

11



. Following by (8),
~ ~ ~ N\ —1 .
Agy = Up VLN (MT(Ul.ZVf,)N> MTULSV]L
N N ~ N ~ A\ —1 ~ ~
_ (Uﬂzlvlw + U2222V1T2N) <MTU1121V1T1N n MTUIQEQVJQN) (MTUHElVQTl + MTUHEQVQTQ) .

Let “L”, “M”, “R” stand for “Left”, “Middle” and “Right”,

A~ A

By = U X\ VTN,  Ep = UpXyViLN; (36)
By = MTU1121V1T1N, Ey = MTU12E2V1T2N§ (37)
Br = M'UnS1Vy,  Ep=MTUn5,V5, (38)

By Lemma 2 in the Supplement, we can see the following properties of these matrices,
1Bl < 0r1(A),  Eull < 0va(A),  [|ERI < 0741(A), (39)

IELlly < 1%2llg, [1Emlly < 1%l BRIy < 1%2llq, (40)

min(Bar) = Cumin (MT(PMUH)Zl(VﬂPN)N> _— ((MTM)(MTUH)EI(VlTlN)(NTN))
44

Zamin(zl)Umin(Ull)O—min(‘/ll)Umin(MTM)Omin(NTN) Z EO—T(A)Umin(Ull)Omin(‘/ll)7 (41)
45

Bt =0l (By) < , 42

|| M || mln( M) = 44UT(A)Umin(U11)Umin(‘/ll) ( )

Ay = (B + EL)(By + Ex) '(Br + Eg), BBy Br=UnSiVi, (43)

IBLB | = Uat S0 (VN ) (VEN) S (MTUL) Y| = (| Uat (MTU) 7Y

44)

. 1 J/45/44 (

< MM < VB
O'min(MTUH)O'mm(MTM) Umin(Ull)

. 45/44
133 Bl = 1 ) < LN (4
O-min(‘/ll)
By (39), (41) and the assumption (10), we can see owmin(Bar) > ||[En||, so

A (43 _ _ _ _ _ -
Az 2 (Br + EL)(BMl - BMlEMBMl + Bz\/llEMBMlEMBM1 — -+ )(Br + ER);

12



| Az, — BBy Brll, < || BLBj, 1EMZ 3 En) By B, +||ELZ 3 En)'By Brl,

=0

+||BeBaft Y (—~EmBy ) Er||, + || ErBaf Z(—EMB;;)’ERHq
i=0 i=0

< BeBy W Eally Y - 1 Eell’l| By I By Brll + 1 Eclly Y 1B 'l Earl| By Brl

=0 1=0

+HBLB D N Ewl IB N Erlly + 1B Y B I I B | Erll,
=0 =0
39)00) || B By |[[| By Brll + 1By Bell + |1 BBy || + | By llovsa(A)
1= 0,1 (A)]By/ |
(44)(45) 1 45/44 \V/45/44 \/45/44
< 7 = : + + 1%21lq
- Jr—l—l(A)HBM || Umln(Ull)Umln(‘/ll) Um1n<U11) Umln(‘/ll)

[ZE— ( 4544 A5 A5 )
O min ( 88

- 450,41 (A) .
1-— 440T(A)O'min(-’(_]lll)o'min(vll) U11>0-m1n(‘/11) Umln(Ull) Umln(‘/ll)

45/44 VIS5 4_5)
88 )

A—max (r
_43” )Hq (O’min<U11)O'min<‘/11) Umln(Ull) O'min(‘/ll)

[paey[P

Finally, since Agy = Uy S, Vi, + UsnSoVy, & By By By + Usy S5V, we have

| A2z — Asllq <||A22 — BrByy Brllg + [U22Z2 Vil

1 1
S?)HA—max(r)Hq (1 + m> (1 * M) . -
Proof of Theorem 2

We only present proof for row thresholding as the column thresholding is essentially the same
by working with AT. Suppose M, N are orthonormal basis of column vectors of Uy, Vi;.

We denote U[(:’ll): = M ve =N , which are exactly the same as the M and N in Algo-

[Lr] ™
rithm 1. Similarly to the proof of Theorem 1, we have (35). Due to the assumption that

01 (A)Omin(U11)omin(V11) > 40,41 (A), (35) yields

MTM) > 3824/3825, o2, (NTN) > 3824/3825. (46)

mll’l( 1’1’111’1(

As shown in the Supplementary material, we have

13



Lemma 7 Under the assumption of Theorem 2, we have ¥ > r.
We next show (13) with the condition that 7 > r in steps.

1. Note that A;; = U121 V]| + U225 V5, we consider the decompositions of Z and let
7y = U(2)TU1121V1T1‘/(1) + U(Q)TUHEQVJQV(D,

2, [17,1:0) = U[ L U Zi ViV, 11)r] + U[ L U1222V12V[ ] = = By + Eu,
Zo1 :1:) = Ut 21 V) V (1] T U2222‘/12v 147 £ B;+ EvLs,

Zig 1) = U[(:?l);]UnEﬂ/le + U, 21;]U1222V2T2 £ Br; + Epg.

Note that the square matrix U

[;,1:7] [:,1:7]

2 L6 3824

(47)
(48)

(49)

"M € R"™*" is a submatrix of Ut A € R™" we know

Ounin (U M) > i (U] M) = 0 (MM) > [ 2. (50)
3825
Similarly, amin(V[(l)T]N ) > %. By M, N are the orthonormal basis of column vectors of
Ui, Vi1, we have Pyy = MMT, Py = NNT, and
3824
Umin(U[ 1:7] Ull) >Um1n(U[ 1: ]M)Umin(MTUll) > 38250mln(U11) (51)
similarly, we also have
13824
gmln(v 17"]‘/11) - ﬁgmin(‘/ll)- (52)
(51) and (52) immediately yield
3824 3824
rBf>_minU minZ minv :—TA minU minv' 53
or(Bums) = 38250 (U11)0min (X1) 0min (Va1) 38250 (A)omin(U11) omin (V1) (53)
Besides, we also have
(47)
[Ervsll < [|Z2]] = 07v41(A) (54)
2. Next, we consider the SVD of Z11 [1:5.1:4)
Zhi s = JAKT, T A K € R™ (55)

14



For convenience, we denote Ay = Aj1.,1.49, A2 = Ajrg1)ir,(r41):7)
J1= J[:,l:r]7 Jo = J[:,(r—&—l):ﬂ; K, = K[:,l:r]7 Ky = K[:,(r+1):f]7 (56>

Suppose My € R™" is an orthonormal basis of the column space of Byrs; Nz € R™7 is
an orthonormal basis of the column space of B]T\M. Denote span(-) as the linear span of
the column space of the matrix. We want to show span(My) is close to span(.J;); while
span(Ny) is close to span(/K7). So in the rest of this step, we try to establish bounds for
Omin(JT Mz) and oy (K] Nz). Actually,

Zi i) = By + Evi = (Bas + Py, Evs) + Py B

Now we set X = (Bys + Py, Ene), Y = PM%EMJ:, then we have

(53) 3824
0.(X) >0.(Buyi) — | Pug Bl > @Ur(A)Umin(Ull)Umin(Vll) —0,41(4),

(12) (54)
>o0r11(A) > [|Evell = [V

Besides, by the definition of Bj; and Mz we know rank(X) < r. Also based on the
definition of Y, we know PxY = 0. Now the unilateral perturbation bound in Cai and

Zhang (2014) yields

AX) IV
o2 (MLJ) > 1— ( il . (57)
7 o (X) — Y]]

The right hand side of the inequality above is an increasing function of o,.(X). Since

0. (X) > 55320, (A)0min(Un1) 0min (Vi) = 0741(A) > (3 — 5555)0v41(A) > (3 — 558 Y,
o (JTMy) >1— 3 — 4/38%5 2 > 0.859 (58)

minl 12 = (3—4/3825)2—1) = 77
Similarly, we also have

o2 (KTNy) > 0.859. (59)

3. We next derive useful expressions of Asy and 12122. First we introduce the following quantities,

47
T 2 a5 © JT By + JTEy 2Ky 2 Bapy + Eany, (60)
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47
T3 2 s Ko ' JIBy 2Ky + JYEp Ko 2 Baps + Eapo, (61)
(48)

Zo iK1 = BriKi + Ep:Ky = By + Epy, (62)
Zo1[:,1: r]K2 = BL #Ko+ Epi Ky = Bra + Epg, (63)
T Zio g ' JTBry + JTEps 2 Bri + En, (64)
S} 2y 2 JJBrs+ J}Ers 2 Bro + Ene. (65)

Since

BBy} Bry = B Ky (J] By K1)~ J] Bgy

1 (66)
~Un SV K (USRS K ) TS UGSV = Un SV,
we can characterize Ass, Agz by these new notations as
Ay = Uy X1 V3| + U2222V22 BLlBMlBRl + U X0 V3, (67)

AQQ :Z21,[:71:'f’]211 J[1:7,1:7] Zl? J1:7,:] (_) ZQl 51 T]K (J le J[1:7,1: T]K) JTZlQ,[l:'F,:]
= (Z21,[1:ﬂK1 + ZQl,[l:i]KQ) (JlTZn,[l:f,l:f]Kl + JQTZH,[I:'f,l:f]KQ)_I (JlTZu,[m] + J2TZ12,[1:f])
2
60)—(65 _
= )Z<BLk + Evi)(Buk + Evik) ™ (Brr + Ere) (68)
k=1

4. We now establish a number of bounds for the terms on the right hand side of (60)-(65).

Lemma 8 Based on the assumptions above, we have

Omin(Ba) > 3.430,41(A); (69)

BBl < \/3825/3824 B \/3825/3824 -0
|1 BriBi |l < /0555 . 1By Brill < , (70)
0.8590 min (U11) V0.8590 i (V11)
[Emtllg < [[A-maxrlles [[Brellq € 1A= maxryllas 1 BRellq € NA-maxlle,  t=1,2,  (71)

| 3825/3824 1
B+ Ep) (B + Eaa) ' < T h
(Bua + Bua)(Bass + Ba) ' < R+1_1/3.43< 0‘859amm<Un>+3-43)’ "

2,/3825/3824

Bl <
|Brella < /08590, (Vi1)

1A= max(r)lq- (73)
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The proof of Lemma 8 is given in the Supplement.
5. We finally give the upper bound of || Ay — Ay ||, By (67) and (68), we can split the loss as,

Agy — Agy = ((BLl + Er1) (Ban + EMl)_l (Br1 + Em1) — BLlBlele) (74)

+ (B2 + Epr2) (Bua + EMQ)_1 (Bra + Epra) — Us¥o Vi,

We will analyze them separately. First, [|[UseXaVah|lq < [|A= max(r)llq; second,

|(Bra + Er2)(Bua + Eu) ™' (Bra + Eus)llq

<|(Brz + Er2)(Burz + Ex2) ™' || - (I Brallg + || Earzll)

(72273) T +3.43 \/3825/3824 n 1 2./3825/3824 1) 4 ||
= U 283 \ V08500, (V) 343) ) \ V08500, (Vi) ~max(r)

1.524 216
< Tr+ —=+0412) [ ———— 4+ 1) A x|l o- 75
o ( f Umin(Ull) ) <O-min(‘/11) ) || ( )Hq ( )

The analysis of ((Br1 + Er1) (Ban + Eyvi) ' (Bri+ Egy) — Br1B;} Bri) is similar to the

proof of Theorem 1. We have

H(Bm + Ep)(Bant + Exn) " (Bri + Ery) — BL1BX4113R1||q

<|[Bui(ByyEsn Y (= By Ean)'Byjy)Bra | + || Era (Z(_Bl\_/fllEMl)iB]T;l) Bpi
i=0 q i=0 p
+ || Bra (B]Qll Z(—EMlB]T/fll)i) Eri|| + || B2 (B]Qll Z(—EMlB]T/fll)i) Er
=0 q 1=0 q

<N BByl Bsnlly Y Bl 1By I 1By Brall + 1 Ezalla Y 1By I Eans Il Byfy Bra |
=0 =0

+IBuBAIND B VI BAINNER g + I Esall D 1B I Esra ]| Erallg

i=0 i=0
D 122l B BB B BB BBt B;\ A
< DB (IBea By M Bary Broll + | Bapy Brall + | Bea By | + | Bajillor+1(A))
1= 0,41 (A)[| Byl
(70)(69) 1.65 1.53 1.53
< + + +0.42) A axm |- 76
(Umin(Un)Umin(Vn) Umin(Vn) Umin(Vn) “ ( )Hq ( )
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From (75), (76), (74), and the fact that owin(U11) < 1 and Tg > »1'?311) +0.35,

4.95

R . 1
Ay — A <[ 2.167, —— 4+ 2.42 ——— + 1| |AL paxr
|| 22 22||q o ( R+ (Umin(Ull) * )) (O—min(‘/H) * ) || ( )Hq
1.36

1
<(216Tr +4.31 | ——— 40.35 ———~ 1) [[A-maxe 7
( " <Umin(U11) )) (Umin(‘/ll) ) H ()Hq ( )
1
<65T 2R 1 A—maxr .
= <amin(vn) * )” (lla

This concludes the proof. [

Proof of Lemma 7.

In order to prove this lemma, we just need to prove that the for-loop in Algorithm 2 will break

for some s > r. This can be shown by proving the break condition

|Drsll = HZQLDZS]Zl_l:}[ | < Tk, (78)

1;5,1:s}|
hold for s = r.
We adopt the definitions in (36), (37), (38), then we have
2111 1] = U[(;,Ql)L]AnV[;(}l)ﬂ = MTAuN
= MU VN + MU VLN
= By + Eu,
Zo1 [ 1:] = A21V[:(711):T] = (UnX1 V]| + U Xa Vi) N = Br + Ep,.

Hence,

=|(BL + EL)(By + En) 7|

ZQl,[:,l:'r]Z;l{

[1:r,1:7]

< +||ELBy Y (~EuBy')

=0

BBy S (- BByl

1=0

< (IBLBy 1 + 1 EL 1 By )

1
1= |ExBy/ |

(4)(70) ( VA | 450,,1(A) ) 1
= 1

O'm1n<U11> 440'r(A)0'm1n(U11)0'm1n(‘/11) - 44UT(A);EZ1T(-I_]11(II?3’min(Vll)
1.36
< 1035<Tg,
Umin(Ull) &
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which finished the proof of the lemma. [

Proof of Lemma 8.

First, since My € R™" and N, € R™*" are an orthonormal basis of B M, and BXM, we have
PMZ = MzM} and PNZ = NzN} and
Umin(BMl) :Umin(JirBM,le) = Umin(JlTMZM}BM,fNZN}Kl)
> Omin (ST M7)Omin (M} Bar i Nz ) Omin (NS K1) (79)

(58)(59) (53) (0.859 - 3824 (12)
> 0.8590,(By) > WUT(A)Umin(Ull)gmin(‘/ll) > 3.430,11(A).

which gives (69).
|BuByb | = || Brsk (] BusKy) ™!
< T77(2)7T o T 17727
Umln(J U 1T]U11) Umln(leM (U 17“]U11)) Jmin((JlM )(M U 17"]U11))

1 1 G168 \/3825/3824

S : ~ )
Ounin(JTM2) 00 (U], Un) V0.8590 i (Us1)

-1
U2121V1T1V[;(,11):f]K1 (JTU 21:]U1121V1T1V[;(,11):ﬂK1> H - ’

-1
Uar (TUETUN) H
1 1 1 (80)

which gives the first part of (70). Here we used the fact that Zﬂ/HV 11 18 a square

matrix; My is the orthonormal basis of the column space of Z11 j1..1:5) = U TULY, VHV

[:,1:7] [;,1:7]"

Similarly we have the later part of (70),

3825/3824
1B B | < Y 2520/3824 (81)
V08590 1n (Vi1 )

Based on the definitions, we have the bound for all “ E” terms in (60)-(65), i.e. (71). Now

we move on to (72). By the SVD of Ziy 1.7.1.4 (55) and the partition (56), we know

-1
LA 0 T 2 s K1) 0
([Jl JQ]TZIL[L??,I:?] (K KQ]) = = ( ! )
0 A2 0 (ngll,[lsf,lﬂKQ)

-1



Hence, we have

H(BL2 + Er2) (B + EMQ)_1|| = ’ Zon 1) B2 (ngll,[l:f‘,lzﬂKQ)_l

—|| o1l K] (00 B Zag sl Ka)) ™ = Zown K (T Zan s K1) |

< ‘ Zo1[:1:4) (Z11,[1:f,1:f])_1 + H(Bm + Er1) (B + EM1)71H
<Tp+ ||Bua- Basy Y (=Ean Byp)'|| + [ Eva - Bafy Y (—EanByh)’
i=0 i=0
1
<Tr + (|BaaBi:l + | Eca ||| By —
R (H L1 MlH H LlHH MlH) 1 ||EM1||||BM11||
(69)(70)(71) \/ 3825/3824 1 1
S TR + + - )
V0.8590min(U1y) 343 ) 1-1/343

(82)

which proves (72). Since Zi1 1.4 = Bumys + Eumy and by definition, rank(Bysz) < r, by

Lemma 1, we know
Orti( Zi i) < 0i(Eavg),  Vi> 1
Then

[Basallg <NIBarz + Enllg + 1 Esrzllg < 13 2101, e 101 Kallg + | Edrzllg

=y Z ol (Zii ) + | Enzllq < ZUZ(EM,f> + || Enrzllq
=r+1 =1

(71)
< Ewmille + 1Bsalle < 20 A-max(rlla-

Same to the process of (80), we know

1 _ _\/3825/3824

Cain(V VK1)~ V08590 (Vir)

Also, ||V5|| < 1. Hence,

(65) 2
1Brzllg = 173 Brally = U Un S Vi g

2 1 1 _
=3O U S (Vi VS KO (VY LK)~ Vi

1 —
<IBaszlly - VAV KD M - V2L

(84)(85) 2,/ 3825/3824
S HA—max(r)Hq-
V08590 min (Vi)

20
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which proves (73). O

Proof of Theorem 3.

The idea of proof is to construct two matrices A", A both in F,(M;, My) such that they
have the identical first m; rows and ms columns, but differ much in the remaining block.
Suppose a, b, ¢ > 0 are fixed numbers, ¢ is a small real number. We first consider the following

2-by-2 matrix
a c
B(e) = . (87)
b X +te

Suppose the larger and smaller singular value of B(e) are A\pax(€) and Apin(g), then we have

a? + b%)(a® + ¢?)

Ama(@) = [1B(0)]| = X

88
- (58)
as € — 0; since Apax(€) - Amin(€) = |det(B)| = ale|, we also have
a2
Amin (€) /]| — (89)
V(@2 +02)(a? + 2)
as € — 0. If B(e) defined in (87) has SVD
.
B(e) = Uil Uz2 . Amax(€) 0 . V11 V12 (90)
U21 U2l 0 Amin (€) V21 V21
then we also have
— ¢ — b — ¢ — ¢ (91)
u — U —_—, v —, v e
" Vere O Ve U Vare U Vate

as € — 0.
Now we set a = 1, b = /1 — ME/My; —n, ¢ = \/1 —M3/My —n, d = bc/a, where 7 is
some small positive number to be specify later. We construct Ay, Aqa, Asq, A%) and Ag) such

that,

al, 0 cl, 0 bl, 0
0 0 0 0 0 0

m1Xma ma X (p2—m2) (p1—m1)xma

21



AS) = . AY) = L (93)
0 0 0

(p1—m1)x(p2—m2) (p1—ma1)x (p2—ma2)
Here we use I, to note the identity matrix of dimension . Then we construct A and A®
as

A A A A
n A Qo _ |F1 A ’ (94)

AN — 7
Ay AY Ay AG)

where A® and A® are with identical first m; rows and msy columns. Since the SVD of B(e)

is given as (90), the SVD of AM) can be written as

T
1 1 1 1 1
01(1) 01(2) ' Eﬁ "0 ‘ L1(1) L1(2)

AL — :
1 1 1 1 1
Up' Uz'] |0 =] W W
where
_u I, w121, g1 1, U1,
Up=| L U= S Un=| , Up=|
0 0 0 0
L miXr miXr (p1—ma1) xr (p1—m1) xr
-v I, v12d, va1 1, Vool
Vi, = 11 V= 12 Uy = 21 V= 22
0 0 0 0
L mo X7 mo X7 (p2—m2) xr (p2—m2) xr
E1 = >\max<5>jr7 Z32 = )\min(g)[r-
Hence,
(U11) a — ! > M -0
min =Uu1 = s as &
o 1 M \/a27—+-b2 \/1-M? 2 '
1+ a1
(Vir) e — ! > M. —0
min =11 = , aseg .
N

Also, ||Eél)|| —0as e — 0. So we have A € F,(M;, M) when ¢ is small enough. Similarly
A®) ¢ F.(My, My) when ¢ is small enough. Now we also have HA(_l)maX(T)Hq = (gAmin (2)) 7 =

2 1 2
0N (), 1A%l = (@hmin(—0))Y = g0 (—2). AL — AQ |, = (q(2le))9)Ve =
2|e|q/a.
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Finally for any estimate Ay, we must have

i A LA, — A(1)> _ (fl - A(2)>
ax { [ A2z — Aél2)||q || Ago — A%)Hq} S 2 H( 22 22 22 22
(1) ’ 2 ' . 5
| A mlle A e mln{HA(_inaX(T)“q’ HA(—LMX(T)Hq}

q

2 L2 12
> 2|e] (59 V(@ 4+ 1?)(a? + ) (95)
2min {Apin(€), Amin(—€) } a?

- <1+<1TMIQ —77)2> <1+ (N —n>2)

as e — 0. Since AN, A® ¢ F,.(My, My) and are with identical first m; rows and msy columns,

we must have

Aoy — 1— M? 1— M2
inf  sup M > (1 + (- 7))2> (1 (=2 - 77)2>-

Agy A€ F, (M1, My) HA—maX(T)HCI B

Let n — 0, since My, My < 1, we have

Agy — A 1 1/ 1 1
inf  sup [ Az 22/l > > - <— + 1) (— + 1) ) (96)
Any AcF, (M1, Ms) || A= max(r) ||q MMy, — 4 \ M, My

which finished the proof of theorem. [

Proof of Corollary 1.

We first prove the second part of the corollary. We set o = (136/165)2. Since UL € RPEXT

is with orthonormal columns, by Lemma 5 and

my > 12.5WYr(logr + ¢) > 5 W r(logr + ¢),

(1—-a)
we have
amq
b1
with probability at least 1 — 2exp(—c). When (97) holds, by the condition, we know

Omin(Ull) = O—min(U[Ql,lzr}) 2 (97)

1
ri1(A) < 0 (A)omin(Vid) =1 2 < 0, (A)omin (Vi)

1 1
—'minU S_’I‘A minv minU .
=\ 5va Omin(U11) 40( )Tmin (Vi1) Omin (Un1)
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When Tx > 24/p1/my, we have

1.36
1 0.35< 136,/ 2 4035 <2, /L < Ty
Omi (U11) amy my

Hence we can apply Theorem 2, for 1 < ¢ < oo we must have

HA22 - A22

1
. S 65TR HA—maX(r)”q (m + 1) ) (98>

which finishes the proof of the second part of Corollary 1. Besides, the proof for the third
part is the same as the second part after we take the transpose of the matrix.

For the first part, the proof is also similar. Again we set a = (136/165)%. Then we have

4 4
mi Z WWSI)/”(lOgT + C), mo Z mWﬁQ)r(log T+ C),
SO
am am
Omin(U11) = Omin(Uja,14]) > ) 1; Omin(V11) = Omin(Viag,14]) > » 2 (99)
1 2

with probability at least 1 — 4 exp(—c). When (99) holds, we have

1 /mm 1 1
or41(A) < UT<A)6 pip; < O-T(A)G_ao-min(UH)O-min(‘/ll) < ZUT(A)O-min(‘/ll)O-min<Ull)-
When Tr = 24/p1/my or Te = 24/p2/ma, similarly to the first part we have
1.36 1.36
———4+035<Tg, or —+0.35<7Tg.
Umin(U11> i O'min(‘/ll) ¢

Hence we can apply Theorem 2 and get

. 1 D1 P2
Ay — A <6.5TR||A_ max(r — +1]1 <652,/ —- +1 A ax(r
H 2~ An|| < Rl i llq <Gmin(vn) ) < Vo ( v ) | " llq
pP1p2
<29|| A_ ax(r )
<29 @ lq p—

Proof of Corollary 2.

Suppose 0 < ay < 1, since U}, 1., € R is with random orthonormal columns of Haar measure,

we can apply Lemma 6 and find some ¢ > 0 and 6 > 0 such that when p; > m; > cr,

136 /my
min U = Omin U :m1,lir Z oAl T 100
Omin(U11) = Omin(Utma,1:7) 165\/291 (100)
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with probability at least 1 — exp(—dmq). When (100) happen, we have

ori1(A) < arm)amm(vn)1 " < g (A)omin(Vin)omin (U1,
5]

1.36 165 D1 D1
——— + 035 < 1.36 - —— / 0.35 <24 / .
Umin(Ull) + o 136 +

Hence we can apply Theorem 2, for 1 < ¢ < oo, we have

1

| Asz — 422 L M — (%—(VH) + 1) , (101)

which finishes the proof of the corollary. [

3.1 Description of Cross-Validation

In this section, we describe the cross-validation used in penalized nuclear norm minimization
(4) in the numerical comparison in Sections 4 and 5.
First, we construct a grid 7' of non-negative numbers based on a pre-selected positive

integer N. Denote
(PN _ A An

max )

A21 0
i.e. the largest singular value of the observed blocks. For penalized nuclear norm minimization,

we let T = {tPN tPN 10730/ ’trlflé\; ) 1073(N/N)}.

max’ “max

Next, for a given positive integer K, we randomly divide the integer set {1,---,m;} into
two groups of size m!) ~ @, m® ~ % for H times. For h = 1,---,H, we denote

by JP and J? C {1,2,--- ,m;} the index sets of the two groups for the h-th split. Then
the penalized nuclear norm minimization estimator (4) is applied to the first group of data:
Ai1, Ao, (Ar2)yp g, 1ee. the data of the observation set Q@ = {(i,j) : 1 < j < my, ori €
JP my +1 < j < py}, with each value of the tuning parameter t € T and denote the result
by APN(t). Note that we did not use the observed block A (mat1)pe) 10 calculating APN(¢),

Instead, Apsn gmyt1):ps) 15 used to evaluate the performance of the tunning parameter ¢ € T'.
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Set
H

LOEESS

h=1

2 (102)

[azc]

[J5(ma+1):p2] — AL (ma+1)p2)

Finally, the tuning parameter is chosen as
t, = arg min R(t)
teT
and the final estimator APV is calculated using this choice of the tuning parameter t,.
In all the numerical studies with penalized nuclear norm minimization in Sections 4 and

5, we use 5-cross-validation (i.e., K =5), N = 10 to select the tuning parameter.
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