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1st Editorial Decision 31 May 2016 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from two out of the three referees who agreed to evaluate your manuscript. Given that their 
recommendations are very similar, I prefer to make a decision now rather than delaying the process 
further. As you will see from the reports below, the referees find the topic of your study of potential 
interest. They raise, however, several points that should be convincingly addressed in revision. The 
recommendations provided by the reviewers are very clear in this regard.  
 
 
--------------------------------------------------------  
 
REFEREE REPORTS 
 
Reviewer #1:  
 
The manuscript by Waite et al. aims to understand the connection between non-genetic variability 
and population performance. The specific question is how biological function emerges as a 
coevolution of the distribution of phenotypes and the single-cell performance function. The authors 
decided to use E. coli chemotaxis as a model system since its biased random walk from 'runs' and 
'tumbles' is well characterized. In particular, the tumble bias (probability to tumble) is used as a 
read-out of phenotype. To investigate performance the authors combine microfluidics, cell tracking, 
and simulations of swimming cells to show that rare phenotypes of low tumble bias strongly 
improve the population performance in terms of chemotactic drift up the gradient. This statement is 
formalized using Jensen's inequality, which says that the average of a convex function (chemotactic 
drift as a function of tumble bias) is larger than the function value of the average. By expressing a 
key adaptation enzyme (CheR) from an inducible plasmid, they show that the changes in tumble 
bias have the predicted effect on the drift. While is it well known that chemotactic performance or 
drift depends on tumble bias and level of adaptation enzymes, the manuscript formulates the 
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mapping between phenotype variation and population performance in an elegant and clear way. 
Also the variability of the single-cell trajectories has not been quantified in the past. The findings of 
the paper may play a role in predicting the time of an infection based on chemotactic variability. The 
paper is overall convincing and well written to interest a broad audience.  
 
Major points:  
 
What if a different readout of phenotype or performance would have been used? Trivially, if the 
'coherence' of the swimming across the cell population is used as a performance measure, then a 
broad or long-tailed distribution of phenotype is overall bad performance. There might also be 
concave functions where the average of the population performance is below the performance of the 
average cell, e.g. anything related to 'precision'. Hence, it seems very subjective to choose one 
example which 'works'.  
 
The trajectories are rather short (1 min). If trajectories are longer, will rotational diffusion not 
destroy good chemotaxis at low tumble bias? So low tumble bias is not universally good as this 
depends on length scale of interest.  
 
Chemotactic performance also depends on gradient steepness, speed of adaptation, level of CheB 
enzyme, and level of CheY response regulator, just to name a few. However, the roles of these 
parameters are not discussed. Please explain chosen selection of what to consider and what not.  
 
Are measured trajectories in 2D or 3D? Same question applies to simulations. Is tumble bias 
measured in a gradient, and if so, tumble bias should change along gradient. How is this taken care 
off?  
 
An earlier model of the group, published in Dufour et al. (2014), does not account for the bias in 
angles after a tumble which may increase the drift at high tumble bias. Is this included in the current 
model?  
 
Minor points:  
 
In Fig. 1 B-D it is unclear what the 'distance past gate' means in terms of the schematic of the flow 
chamber in panel A. Please indicate 'distance' and 'gate' in this schematic.  
 
 
 
Reviewer #2:  
 
In this paper, the authors use the chemotactic behavior of E. coli as a model to investigate the effect 
of a broad distribution of phenotypes on the efficiency in performing a specific task by a population 
of clonal individuals. They use a cleverly designed microfluidic device and automated data 
collection and analysis to record the motion of thousands of E. coli cells in a channel with a pre-
established gradient of chemoattractant. This allows them to correlate a specific phenotype (tumble 
bias) with the performance (distance travelled up the gradient), using both wild-type cells and a 
strain that expresses the methyltransferase CheR under the control of inducible promoter. They 
showed that both diffusive spreading in absence of a gradient and chemotactic drift were higher for 
low but non-zero tumble bias. They also performed simulations of the chemotactic behavior, in 
excellent agreement with the experimental results. They then used all their data to construct a 
phenotype to performance map, which was non-linear and convex, and concluded that highly 
performing outliers that correspond to very low tumble bias are important in bringing the average 
performance of the population above the performance of the average cell. Notably, this effect could 
be mathematically formalized using Jensen's inequality and it is likely to play a role in many 
biological systems.  
This manuscript is insightful and technically solid and the use of E. coli chemotaxis as a model 
system to address effects of population heterogeneity and cell individuality has an excellent 
tradition. I am confident that this work will be of interest to a general readership of MSB. However, 
I do have several critical comments that need to be addressed before the manuscript is accepted for 
publication.  
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Major point:  
Although it is clear that cell performance in a gradient depends on tumble bias in a non-trivial way, 
this dependence might be more complex than currently suggested by data presentation and at least 
partly indirect. Can the authors clearly distinguish direct dependence of performance on tumble bias 
from dependence on other bias-related behavioral parameters? In this context, titration of the 
adaptation enzyme CheR may not be an ideal way to regulate tumble bias, since levels of CheR 
similarly affect kinetics of adaptation, another key determinant of the chemotactic performance. 
Authors' own previous theoretical work clearly established the importance of the adaptation kinetics 
(i.e, short-term memory) in chemotactic behavior (Emonet & Cluzel, 2008; Frankel et al., 2014). If I 
am not mistaken in my interpretation, computer simulations shown in Frankel et al. (2014) suggest 
that changes in adaptation kinetics due to variation in the levels of adaptation enzymes have even 
stronger effects on performance than changes in tumble bias. Moreover, at low levels of CheR 
tumble bias might not only be low but also highly variable in time, which might itself increase 
efficiency of chemotactic movement (Emonet & Cluzel, 2008).  
Although the main message of the story will remain valid even if the correlation between 
performance and tumble bias is indirect, I think that current focus on tumble bias might be 
potentially misleading. However, this issue could be relatively easily resolved by titrating the 
response regulator CheY, because levels of CheY should tune mean tumble bias without affecting 
the adaptation kinetics or slow methylation-dependent bias fluctuations. I do not ask for redoing all 
experiments at varying levels of CheY, but I believe that an experiment that confirms that the same 
(or similar) performance-phenotype relation is observed when tumble bias is controlled by CheY 
levels would be important for data interpretation.  
 
Minor points:  
- Figure 3D: Although for each induction level of CheR taken separately the performance is ordered 
according to the tumble bias, it appears that the performance is significantly different for a fixed 
range of tumble bias depending on the induction level. Could it be related to effects of CheR on 
parameters other than tumble bias (see comment above)?  
- For both WT and 10uM IPTG induced CheR - and also for DcheY strain as a control - it would be 
interesting to show the distributions of distances past the gate for each subpopulation with a given 
tumble bias, at least at a given time point (e.g. 20 min). Are they self-similar, or is the population 
spreading inherently different for low tumble biases? Only average travelled distances are shown so 
far.  
- Materials and Methods, subsection on data acquisition (Line 378 and following): As far as I 
understand, the whole channel seems to be scanned sequentially using 1 min long movies, the whole 
scan being roughly 10 minutes long. Is it actually the case? This should be described more clearly 
(e.g. how many areas, are they overlapping). Also, the pixel size of the camera is missing.  
- Materials and Methods, line 385: Please give the characteristics of the filters of the YFP block  
- Line 419: typing mistake "track length is is inversely proportional... " 
 
 
1st Revision - authors' response 15 November 2016 

Continued on next page. 
 
 
 
 
 
 
 
 
 
 
 



We would  like  to  thank  the  reviewers  for  their  thoughtful  and  constructive  comments.  We have
addressed each comment/concern in a point-by-point manner below. Text in the manuscript that has
been altered or added to addresses these issues has been colored blue.

Reviewer #1:

The manuscript by Waite et al. aims to understand the connection between non-genetic variability and 
population performance. The specific question is how biological function emerges as a coevolution of 
the distribution of phenotypes and the single-cell performance function. The authors decided to use E. 
coli chemotaxis as a model system since its biased random walk from 'runs' and 'tumbles' is well 
characterized. In particular, the tumble bias (probability to tumble) is used as a read-out of phenotype. 
To investigate performance the authors combine microfluidics, cell tracking, and simulations of 
swimming cells to show that rare phenotypes of low tumble bias strongly improve the population 
performance in terms of chemotactic drift up the gradient. This statement is formalized using Jensen's 
inequality, which says that the average of a convex function (chemotactic drift as a function of tumble 
bias) is larger than the function value of the average. By expressing a key adaptation
enzyme (CheR) from an inducible plasmid, they show that the changes in tumble bias have the 
predicted effect on the drift. While is it well known that chemotactic performance or drift depends on 
tumble bias and level of adaptation enzymes, the manuscript formulates the mapping between 
phenotype variation and population performance in an elegant and clear way. Also the variability of the
single-cell trajectories has not been quantified in the past. The findings of the paper may play a role in 
predicting the time of an infection based on chemotactic variability. The paper is overall convincing 
and well written to interest a broad audience.

Major points: 

What if a different readout of phenotype or performance would have been used? Trivially, if the 
'coherence' of the swimming across the cell population is used as a performance measure, then a broad 
or long-tailed distribution of phenotype is overall bad performance. There might also be concave 
functions where the average of the population performance is below the performance of the average 
cell, e.g. anything related to 'precision'. Hence, it seems very subjective to choose one example which 
'works'. 

The reviewer is right to point out that we focused on one metric to evaluate cell performance. We want 
to clarify that we did not choose this metric because it works. We were interested in chemotactic ability,
and therefore we thought the most natural metric of performance would be how quickly each 
phenotype is able to climb up a gradient of attractant. A main point of the paper is to demonstrate how 
diversity can influence population function, not to show that diversity is necessarily beneficial. We 
fully agree with the reviewer that the paper would benefit from a broader discussion of how the 
phenotype-to-performance map of different tasks (such as those that capture the concept of “precision”)
might display different types of nonlinearities  (concave and convex), and how when the map is 
concave, the average performance of the population should be lower than that of the average 
phenotype. We have added this text to the Discussion section.

The trajectories are rather short (1 min). If trajectories are longer, will rotational diffusion not destroy 
good chemotaxis at low tumble bias? So low tumble bias is not universally good as this depends on 
length scale of interest. 



The characteristic time scale of rotational diffusion for a ~1 μm bacterium is about 8 sec (Dufour et al., 
2014). Recently, we experimentally confirmed that this value is at most 10 seconds (Dufour et al., 
2016). So, an upper bound for track duration of 1 min is long enough to capture the effect of rotational 
diffusion. To check the effect of our minimum trajectory length of 6 seconds, we increased the 
minimum trajectory duration to 20 seconds. This did not destroy the performance of low tumble bias 
cells but instead slightly increased it (Appendix Fig. S4) for reasons that we discuss  in the Analysis of 
trajectories section of the Materials and Methods. Therefore, the observed high performance of low 
tumble bias cells is robust to these changes in quantification parameters. We also show experimentally 
that, when tumble bias goes to zero, performance is degraded in (Fig. 3F) as predicted theoretically 
(Dufour et al., 2014), highlighting that the reviewer’s hypothesized performance decrease is reached in 
our device, but only at zero tumble bias. 

Chemotactic performance also depends on gradient steepness, speed of adaptation, level of CheB 
enzyme, and level of CheY response regulator, just to name a few. However, the roles of these 
parameters are not discussed. Please explain chosen selection of what to consider and what not. 

The reviewer rightfully points out that we did not sufficiently discuss our rationale for our choice of 
parameters. We have added text in various parts of the Introduction and Results sections to address this 
concern. In addition, we have run an entirely new set of experiments where we varied tumble bias by 
manipulating the expression levels of CheY and CheZ instead of CheR and got similar results (Fig. 
EV5), showing that, at least in our experimental conditions, performance is dominated by tumble bias 
and not adaptation time (see also answer to Reviewer #2). 

As for investigating the effect of gradient steepness, our device was designed to generate linear 
gradients and the dimensions of the device reflect compromises between various experimental 
constraints. For example, a longer device would produce a shallower gradient and provide more time to
observe cells, but the gradient would take much longer to equilibrate when setting up the experiment. A
shorter device would provide a steeper gradient and shorter setup times but would reduce the amount of
time we would be able to observe the cells swimming before they reached the top of the gradient.

Are measured trajectories in 2D or 3D? Same question applies to simulations. 

In the experiment, cells swim in 3D (the depth of the observation chamber is 10 μm, which is ~10 times
the size of a cell) but are tracked in 2D. We treat the simulation exactly like the experiment, so there the
cells also swim in 3D constrained by boundaries in the same dimensions as the chamber but are tracked
in 2D.

Is tumble bias measured in a gradient, and if so, tumble bias should change along gradient. How is this 
taken care off? 

The reviewer is correct; the observed tumble bias of a cell will drop relative to its unstimulated tumble 
bias when that cell senses a gradient of attractant. The magnitude of the drop is a function of gradient 
steepness (Dufour et al., 2014).  Since E. coli sense the logarithm of the gradient, the linear gradient in 
our device is perceived as being steepest at the start and shallowest at the end.

We cannot directly measure the unstimulated versus observed tumble bias in the same cells in our 
experiment setup. So, we performed a control simulation using an experimentally-derived gradient 
where all the cells were initialized to be identical and had a known unstimulated tumble bias of 0.23. 



We then plotted the average difference between the observed and unstimulated tumble bias as a 
function of position in the chamber.

As expected, the difference is greatest at the beginning of the gradient where the perceived gradient is 
steepest (Appendix Fig. S3A). However, this rapidly falls to a small, constant difference (-0.004) 
within the first millimeter of the observation chamber. The simulation also suggests that the difference 
between stimulated and unstimulated tumble bias cannot account for the observed differences in 
performance (Appendix Fig. S3B).

We have added this point to the main text of the manuscript.

An earlier model of the group, published in Dufour et al. (2014), does not account for the bias in angles
after a tumble which may increase the drift at high tumble bias. Is this included in the current model? 

Initially, we did not include persistence in our model. We measured the average angular persistence of 
cells in experiments without a gradient or a gate and found that it was very small (mean change in 
angle was 81º). We then verified in simulations that including such small persistence did not change the
results. The difference between our result and the commonly cited value of 62° (Brown and Berg, 1972.
Nature.) could be due to differences in experimental conditions. Brown and Berg used a different 
strain, different growth media, different tracking media, tracked their cells in three dimensions, and 
their cells were not constrained to a 10 μm depth as was the case in our observation chamber.

We have added this information to the “Simulations” section of the Materials and Methods.

Minor points: 

In Fig. 1 B-D it is unclear what the 'distance past gate' means in terms of the schematic of the flow 
chamber in panel A. Please indicate 'distance' and 'gate' in this schematic. 

We have updated Fig. 2A to specify the location of the gate.

Reviewer #2: 

In this paper, the authors use the chemotactic behavior of E. coli as a model to investigate the effect of 
a broad distribution of phenotypes on the efficiency in performing a specific task by a population of 
clonal individuals. They use a cleverly designed microfluidic device and automated data collection and 
analysis to record the motion of thousands of E. coli cells in a channel with a pre-established gradient 
of chemoattractant. This allows them to correlate a specific phenotype (tumble bias) with the 
performance (distance travelled up the gradient), using both wild-type cells and a strain that expresses 
the methyltransferase CheR under the control of inducible promoter. They showed that both diffusive 
spreading in absence of a gradient and chemotactic drift were higher for low but non-zero tumble bias. 
They also performed simulations of the chemotactic behavior, in excellent agreement with the 
experimental results. They then used all their data to construct a phenotype to performance map, which 
was non-linear and convex, and concluded that highly performing outliers that correspond to very low 
tumble bias are important in bringing the average performance of the population above the performance
of the average cell. Notably, this effect could be mathematically formalized using Jensen's inequality 
and it is likely to play a role in many biological systems.

This manuscript is insightful and technically solid and the use of E. coli chemotaxis as a model system 



to address effects of population heterogeneity and cell individuality has an excellent tradition. I am 
confident that this work will be of interest to a general readership of MSB. However, I do have several 
critical comments that need to be addressed before the manuscript is accepted for publication. 

Major point: 
Although it is clear that cell performance in a gradient depends on tumble bias in a non-trivial way, this
dependence might be more complex than currently suggested by data presentation and at least partly 
indirect. Can the authors clearly distinguish direct dependence of performance on tumble bias from 
dependence on other bias-related behavioral parameters? In this context, titration of the adaptation 
enzyme CheR may not be an ideal way to regulate tumble bias, since levels of CheR similarly affect 
kinetics of adaptation, another key determinant of the chemotactic performance. 

We agree with the reviewer’s comment and to address it we have done an entirely new set of 
experiments where, instead of modifying CheR levels, we manipulated CheY/CheZ levels. See also 
answer to the reviewer’s comment about CheY below.

Authors' own previous theoretical work clearly established the importance of the adaptation kinetics 
(i.e, short-term memory) in chemotactic behavior (Emonet & Cluzel, 2008; Frankel et al., 2014). If I 
am not mistaken in my interpretation, computer simulations shown in Frankel et al. (2014) suggest that 
changes in adaptation kinetics due to variation in the levels of adaptation enzymes have even stronger
effects on performance than changes in tumble bias. Moreover, at low levels of CheR tumble bias 
might not only be low but also highly variable in time, which might itself increase efficiency of 
chemotactic movement (Emonet & Cluzel, 2008). 

It is correct that at low levels of CheR expression fluctuations in the methylation-demethylation 
kinetics become larger. For that reason our simulations do include noise in the methylation-
demethylation reactions. 

Regarding the effect of changing adaptation time versus that of changing tumble bias, the situation is 
complicated by the fact that in wild-type cells adaptation time and tumble bias are inversely correlated, 
as shown experimentally in single cells  (Park et al., Nature 2010). This correlation is also maintained 
in the model used for our simulations (Frankel et al. 2014). However, we did examine how these two 
effects affect performance independently of each other in another recent theoretical study (Dufour et 
al., 2014). We found that, in shallow gradients, adaptation time only starts to matter for very low 
tumble bias cells  (see in particular Figure 2A from Dufour et al., 2014) . Thus, for most of the range of 
tumble bias explored in our experiments, the dominant factor that effects performance is predicted to be
tumble bias. 

Although the main message of the story will remain valid even if the correlation between performance 
and tumble bias is indirect, I think that current focus on tumble bias might be potentially misleading. 
However, this issue could be relatively easily resolved by titrating the response regulator CheY, 
because levels of CheY should tune mean tumble bias without affecting the adaptation kinetics or slow 
methylation-dependent bias fluctuations. I do not ask for redoing all experiments at varying levels of 
CheY, but I believe that an experiment that confirms that the same (or similar) performance-phenotype 
relation is observed when tumble bias is controlled by CheY levels would be important for data 
interpretation. 

We agree that our focus on tumble bias as the only important chemotactic phenotype was not the best 
way to present our results, and that both tumble bias and adaptation time could contribute to 



performance. In addition to making this more clear in the Introduction and Results sections (please see 
the response to reviewer 1, above), we followed the reviewer’s suggestion and performed additional 
experiments in a strain where we could control the amount of CheY and CheZ (see Fig. EV5). This 
allowed us to experimentally test low tumble bias cells in a manner that did not also affect adaptation 
time in the way that changing CheR does. When CheY was expressed at low levels relative to CheZ, 
this strain also showed increased performance with decreasing tumble bias similar to low CheR 
expression. We could also see a nonlinear performance increase at low tumble bias at early time points 
in this strain. Thus, tumble bias does appear to be the dominant phenotypic parameter in determining 
performance in shallow gradients.

Minor points: 
- Figure 3D: Although for each induction level of CheR taken separately the performance is ordered 
according to the tumble bias, it appears that the performance is significantly different for a fixed range 
of tumble bias depending on the induction level. Could it be related to effects of CheR on parameters 
other than tumble bias (see comment above)?

We believe the reviewer is referring to the fact that, in Figure 3D, the positions of the high and low 
CheR populations in tumble bias bin 0.05 – 0.15 (green) do not have overlapping error bars. We do not 
know the mechanistic basis for this discrepancy, but the difference is also visible in the spatial 
distributions of the populations (Fig. EV2). It is possible that this is related to effects of CheR on 
parameters others than tumble bias.

- For both WT and 10uM IPTG induced CheR - and also for DcheY strain as a control - it would be 
interesting to show the distributions of distances past the gate for each subpopulation with a given 
tumble bias, at least at a given time point (e.g. 20 min). Are they self-similar, or is the population 
spreading inherently different for low tumble biases? Only average travelled distances are shown so far.

We followed the reviewer’s suggestion and added a figure showing the spatial distribution of each 
tumble bias bin for each pass through the observation for wild-type cells, the high- and low-CheR 
experiments, as well as ΔcheY (we did not split this population into tumble bias bins, as this strain 
cannot tumble). This has been added as Fig. EV2 and is mentioned in the main text.

- Materials and Methods, subsection on data acquisition (Line 378 and following): As far as I 
understand, the whole channel seems to be scanned sequentially using 1 min long movies, the whole 
scan being roughly 10 minutes long. Is it actually the case? This should be described more clearly (e.g. 
how many areas, are they overlapping). Also, the pixel size of the camera is missing.

We apologize for not being clear. We have added a more detailed explanation of the acquisition 
procedure to the Materials and Methods section.

- Materials and Methods, line 385: Please give the characteristics of the filters of the YFP block

We have added this information to the Materials and Methods section.

- Line 419: typing mistake "track length is is inversely proportional... "

Thank you. We have fixed this mistake.
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2nd Editorial Decision 16 November 2016 

Thank you again for sending us your revised manuscript. We are now satisfied with the 
modifications made and I am pleased to inform you that your paper has been accepted for 
publication. 
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We	  performed	  at	  least	  two	  experiments,	  each	  providing	  information	  about	  5,000	  –	  10,000	  cells.

NA

For	  each	  experiment,	  we	  had	  many	  diagnostic	  critera	  to	  determine	  whether	  the	  experiment	  
worked.	  We	  checked	  that	  1)	  the	  overall	  tumble	  bias	  did	  not	  change	  much	  over	  time,	  2)	  the	  
gradient	  shape	  was	  consistent,	  3)	  cell	  counts	  and	  speed	  were	  consistent,	  4)	  there	  was	  no	  evidence	  
of	  warping	  of	  the	  PDMS	  chamber	  due	  to	  evaporation.
NA

NA

a	  statement	  of	  how	  many	  times	  the	  experiment	  shown	  was	  independently	  replicated	  in	  the	  laboratory.
definitions	  of	  statistical	  methods	  and	  measures:

Any	  descriptions	  too	  long	  for	  the	  figure	  legend	  should	  be	  included	  in	  the	  methods	  section	  and/or	  with	  the	  source	  data.

Please	  ensure	  that	  the	  answers	  to	  the	  following	  questions	  are	  reported	  in	  the	  manuscript	  itself.	  We	  encourage	  you	  to	  include	  a	  
specific	  subsection	  in	  the	  methods	  section	  for	  statistics,	  reagents,	  animal	  models	  and	  human	  subjects.	  	  

In	  the	  pink	  boxes	  below,	  provide	  the	  page	  number(s)	  of	  the	  manuscript	  draft	  or	  figure	  legend(s)	  where	  the	  
information	  can	  be	  located.	  Every	  question	  should	  be	  answered.	  If	  the	  question	  is	  not	  relevant	  to	  your	  research,	  
please	  write	  NA	  (non	  applicable).

B-‐	  Statistics	  and	  general	  methods

a	  specification	  of	  the	  experimental	  system	  investigated	  (eg	  cell	  line,	  species	  name).
the	  assay(s)	  and	  method(s)	  used	  to	  carry	  out	  the	  reported	  observations	  and	  measurements	  
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  being	  measured.
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  altered/varied/perturbed	  in	  a	  controlled	  manner.

the	  exact	  sample	  size	  (n)	  for	  each	  experimental	  group/condition,	  given	  as	  a	  number,	  not	  a	  range;
a	  description	  of	  the	  sample	  collection	  allowing	  the	  reader	  to	  understand	  whether	  the	  samples	  represent	  technical	  or	  
biological	  replicates	  (including	  how	  many	  animals,	  litters,	  cultures,	  etc.).

figure	  panels	  include	  only	  data	  points,	  measurements	  or	  observations	  that	  can	  be	  compared	  to	  each	  other	  in	  a	  scientifically	  
meaningful	  way.
graphs	  include	  clearly	  labeled	  error	  bars	  for	  independent	  experiments	  and	  sample	  sizes.	  Unless	  justified,	  error	  bars	  should	  
not	  be	  shown	  for	  technical	  replicates.
if	  n<	  5,	  the	  individual	  data	  points	  from	  each	  experiment	  should	  be	  plotted	  and	  any	  statistical	  test	  employed	  should	  be	  
justified
Source	  Data	  should	  be	  included	  to	  report	  the	  data	  underlying	  graphs.	  Please	  follow	  the	  guidelines	  set	  out	  in	  the	  author	  ship	  
guidelines	  on	  Data	  Presentation.

2.	  Captions

Each	  figure	  caption	  should	  contain	  the	  following	  information,	  for	  each	  panel	  where	  they	  are	  relevant:

Reporting	  Checklist	  For	  Life	  Sciences	  Articles	  (Rev.	  July	  2015)

This	  checklist	  is	  used	  to	  ensure	  good	  reporting	  standards	  and	  to	  improve	  the	  reproducibility	  of	  published	  results.	  These	  guidelines	  are	  
consistent	  with	  the	  Principles	  and	  Guidelines	  for	  Reporting	  Preclinical	  Research	  issued	  by	  the	  NIH	  in	  2014.	  Please	  follow	  the	  journal’s	  
authorship	  guidelines	  in	  preparing	  your	  manuscript.	  	  

A-‐	  Figures	  
1.	  Data
The	  data	  shown	  in	  figures	  should	  satisfy	  the	  following	  conditions:

the	  data	  were	  obtained	  and	  processed	  according	  to	  the	  field’s	  best	  practice	  and	  are	  presented	  to	  reflect	  the	  results	  of	  the	  
experiments	  in	  an	  accurate	  and	  unbiased	  manner.

EMBO	  PRESS	  

YOU	  MUST	  COMPLETE	  ALL	  CELLS	  WITH	  A	  PINK	  BACKGROUND	  ê
PLEASE	  NOTE	  THAT	  THIS	  CHECKLIST	  WILL	  BE	  PUBLISHED	  ALONGSIDE	  YOUR	  PAPER

Corresponding	  Author	  Name:	  Thierry	  Emonet
Journal	  Submitted	  to:	  Molecular	  Systems	  Biology
Manuscript	  Number:	  	  MSB-‐16-‐7044



6.	  To	  show	  that	  antibodies	  were	  profiled	  for	  use	  in	  the	  system	  under	  study	  (assay	  and	  species),	  provide	  a	  citation,	  catalog	  
number	  and/or	  clone	  number,	  supplementary	  information	  or	  reference	  to	  an	  antibody	  validation	  profile.	  e.g.,	  
Antibodypedia	  (see	  link	  list	  at	  top	  right),	  1DegreeBio	  (see	  link	  list	  at	  top	  right).

7.	  Identify	  the	  source	  of	  cell	  lines	  and	  report	  if	  they	  were	  recently	  authenticated	  (e.g.,	  by	  STR	  profiling)	  and	  tested	  for	  
mycoplasma	  contamination.

*	  for	  all	  hyperlinks,	  please	  see	  the	  table	  at	  the	  top	  right	  of	  the	  document

8.	  Report	  species,	  strain,	  gender,	  age	  of	  animals	  and	  genetic	  modification	  status	  where	  applicable.	  Please	  detail	  housing	  
and	  husbandry	  conditions	  and	  the	  source	  of	  animals.

9.	  For	  experiments	  involving	  live	  vertebrates,	  include	  a	  statement	  of	  compliance	  with	  ethical	  regulations	  and	  identify	  the	  
committee(s)	  approving	  the	  experiments.

10.	  We	  recommend	  consulting	  the	  ARRIVE	  guidelines	  (see	  link	  list	  at	  top	  right)	  (PLoS	  Biol.	  8(6),	  e1000412,	  2010)	  to	  ensure	  
that	  other	  relevant	  aspects	  of	  animal	  studies	  are	  adequately	  reported.	  See	  author	  guidelines,	  under	  ‘Reporting	  
Guidelines’.	  See	  also:	  NIH	  (see	  link	  list	  at	  top	  right)	  and	  MRC	  (see	  link	  list	  at	  top	  right)	  recommendations.	  	  Please	  confirm	  
compliance.

11.	  Identify	  the	  committee(s)	  approving	  the	  study	  protocol.

12.	  Include	  a	  statement	  confirming	  that	  informed	  consent	  was	  obtained	  from	  all	  subjects	  and	  that	  the	  experiments	  
conformed	  to	  the	  principles	  set	  out	  in	  the	  WMA	  Declaration	  of	  Helsinki	  and	  the	  Department	  of	  Health	  and	  Human	  
Services	  Belmont	  Report.

13.	  For	  publication	  of	  patient	  photos,	  include	  a	  statement	  confirming	  that	  consent	  to	  publish	  was	  obtained.

14.	  Report	  any	  restrictions	  on	  the	  availability	  (and/or	  on	  the	  use)	  of	  human	  data	  or	  samples.

15.	  Report	  the	  clinical	  trial	  registration	  number	  (at	  ClinicalTrials.gov	  or	  equivalent),	  where	  applicable.

16.	  For	  phase	  II	  and	  III	  randomized	  controlled	  trials,	  please	  refer	  to	  the	  CONSORT	  flow	  diagram	  (see	  link	  list	  at	  top	  right)	  
and	  submit	  the	  CONSORT	  checklist	  (see	  link	  list	  at	  top	  right)	  with	  your	  submission.	  See	  author	  guidelines,	  under	  
‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  submitted	  this	  list.

17.	  For	  tumor	  marker	  prognostic	  studies,	  we	  recommend	  that	  you	  follow	  the	  REMARK	  reporting	  guidelines	  (see	  link	  list	  at	  
top	  right).	  See	  author	  guidelines,	  under	  ‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  followed	  these	  guidelines.

18.	  Provide	  accession	  codes	  for	  deposited	  data.	  See	  author	  guidelines,	  under	  ‘Data	  Deposition’.

Data	  deposition	  in	  a	  public	  repository	  is	  mandatory	  for:
a.	  Protein,	  DNA	  and	  RNA	  sequences
b.	  Macromolecular	  structures
c.	  Crystallographic	  data	  for	  small	  molecules
d.	  Functional	  genomics	  data	  
e.	  Proteomics	  and	  molecular	  interactions
19.	  Deposition	  is	  strongly	  recommended	  for	  any	  datasets	  that	  are	  central	  and	  integral	  to	  the	  study;	  please	  consider	  the	  
journal’s	  data	  policy.	  If	  no	  structured	  public	  repository	  exists	  for	  a	  given	  data	  type,	  we	  encourage	  the	  provision	  of	  
datasets	  in	  the	  manuscript	  as	  a	  Supplementary	  Document	  (see	  author	  guidelines	  under	  ‘Expanded	  View’	  or	  in	  
unstructured	  repositories	  such	  as	  Dryad	  (see	  link	  list	  at	  top	  right)	  or	  Figshare	  (see	  link	  list	  at	  top	  right).
20.	  Access	  to	  human	  clinical	  and	  genomic	  datasets	  should	  be	  provided	  with	  as	  few	  restrictions	  as	  possible	  while	  
respecting	  ethical	  obligations	  to	  the	  patients	  and	  relevant	  medical	  and	  legal	  issues.	  If	  practically	  possible	  and	  compatible	  
with	  the	  individual	  consent	  agreement	  used	  in	  the	  study,	  such	  data	  should	  be	  deposited	  in	  one	  of	  the	  major	  public	  access-‐
controlled	  repositories	  such	  as	  dbGAP	  (see	  link	  list	  at	  top	  right)	  or	  EGA	  (see	  link	  list	  at	  top	  right).
21.	  As	  far	  as	  possible,	  primary	  and	  referenced	  data	  should	  be	  formally	  cited	  in	  a	  Data	  Availability	  section.	  Please	  state	  
whether	  you	  have	  included	  this	  section.

Examples:
Primary	  Data
Wetmore	  KM,	  Deutschbauer	  AM,	  Price	  MN,	  Arkin	  AP	  (2012).	  Comparison	  of	  gene	  expression	  and	  mutant	  fitness	  in	  
Shewanella	  oneidensis	  MR-‐1.	  Gene	  Expression	  Omnibus	  GSE39462
Referenced	  Data
Huang	  J,	  Brown	  AF,	  Lei	  M	  (2012).	  Crystal	  structure	  of	  the	  TRBD	  domain	  of	  TERT	  and	  the	  CR4/5	  of	  TR.	  Protein	  Data	  Bank	  
4O26
AP-‐MS	  analysis	  of	  human	  histone	  deacetylase	  interactions	  in	  CEM-‐T	  cells	  (2013).	  PRIDE	  PXD000208
22.	  Computational	  models	  that	  are	  central	  and	  integral	  to	  a	  study	  should	  be	  shared	  without	  restrictions	  and	  provided	  in	  a	  
machine-‐readable	  form.	  	  The	  relevant	  accession	  numbers	  or	  links	  should	  be	  provided.	  When	  possible,	  standardized	  
format	  (SBML,	  CellML)	  should	  be	  used	  instead	  of	  scripts	  (e.g.	  MATLAB).	  Authors	  are	  strongly	  encouraged	  to	  follow	  the	  
MIRIAM	  guidelines	  (see	  link	  list	  at	  top	  right)	  and	  deposit	  their	  model	  in	  a	  public	  database	  such	  as	  Biomodels	  (see	  link	  list	  
at	  top	  right)	  or	  JWS	  Online	  (see	  link	  list	  at	  top	  right).	  If	  computer	  source	  code	  is	  provided	  with	  the	  paper,	  it	  should	  be	  
deposited	  in	  a	  public	  repository	  or	  included	  in	  supplementary	  information.

23.	  Could	  your	  study	  fall	  under	  dual	  use	  research	  restrictions?	  Please	  check	  biosecurity	  documents	  (see	  link	  list	  at	  top	  
right)	  and	  list	  of	  select	  agents	  and	  toxins	  (APHIS/CDC)	  (see	  link	  list	  at	  top	  right).	  According	  to	  our	  biosecurity	  guidelines,	  
provide	  a	  statement	  only	  if	  it	  could.
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Link	  to	  new	  source	  code	  is	  in	  manuscript.

G-‐	  Dual	  use	  research	  of	  concern
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F-‐	  Data	  Accessibility
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D-‐	  Animal	  Models
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