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1st Editorial Decision 31 May 2016 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from two out of the three referees who agreed to evaluate your manuscript. Given that their 
recommendations are very similar, I prefer to make a decision now rather than delaying the process 
further. As you will see from the reports below, the referees find the topic of your study of potential 
interest. They raise, however, several points that should be convincingly addressed in revision. The 
recommendations provided by the reviewers are very clear in this regard.  
 
 
--------------------------------------------------------  
 
REFEREE REPORTS 
 
Reviewer #1:  
 
The manuscript by Waite et al. aims to understand the connection between non-genetic variability 
and population performance. The specific question is how biological function emerges as a 
coevolution of the distribution of phenotypes and the single-cell performance function. The authors 
decided to use E. coli chemotaxis as a model system since its biased random walk from 'runs' and 
'tumbles' is well characterized. In particular, the tumble bias (probability to tumble) is used as a 
read-out of phenotype. To investigate performance the authors combine microfluidics, cell tracking, 
and simulations of swimming cells to show that rare phenotypes of low tumble bias strongly 
improve the population performance in terms of chemotactic drift up the gradient. This statement is 
formalized using Jensen's inequality, which says that the average of a convex function (chemotactic 
drift as a function of tumble bias) is larger than the function value of the average. By expressing a 
key adaptation enzyme (CheR) from an inducible plasmid, they show that the changes in tumble 
bias have the predicted effect on the drift. While is it well known that chemotactic performance or 
drift depends on tumble bias and level of adaptation enzymes, the manuscript formulates the 
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mapping between phenotype variation and population performance in an elegant and clear way. 
Also the variability of the single-cell trajectories has not been quantified in the past. The findings of 
the paper may play a role in predicting the time of an infection based on chemotactic variability. The 
paper is overall convincing and well written to interest a broad audience.  
 
Major points:  
 
What if a different readout of phenotype or performance would have been used? Trivially, if the 
'coherence' of the swimming across the cell population is used as a performance measure, then a 
broad or long-tailed distribution of phenotype is overall bad performance. There might also be 
concave functions where the average of the population performance is below the performance of the 
average cell, e.g. anything related to 'precision'. Hence, it seems very subjective to choose one 
example which 'works'.  
 
The trajectories are rather short (1 min). If trajectories are longer, will rotational diffusion not 
destroy good chemotaxis at low tumble bias? So low tumble bias is not universally good as this 
depends on length scale of interest.  
 
Chemotactic performance also depends on gradient steepness, speed of adaptation, level of CheB 
enzyme, and level of CheY response regulator, just to name a few. However, the roles of these 
parameters are not discussed. Please explain chosen selection of what to consider and what not.  
 
Are measured trajectories in 2D or 3D? Same question applies to simulations. Is tumble bias 
measured in a gradient, and if so, tumble bias should change along gradient. How is this taken care 
off?  
 
An earlier model of the group, published in Dufour et al. (2014), does not account for the bias in 
angles after a tumble which may increase the drift at high tumble bias. Is this included in the current 
model?  
 
Minor points:  
 
In Fig. 1 B-D it is unclear what the 'distance past gate' means in terms of the schematic of the flow 
chamber in panel A. Please indicate 'distance' and 'gate' in this schematic.  
 
 
 
Reviewer #2:  
 
In this paper, the authors use the chemotactic behavior of E. coli as a model to investigate the effect 
of a broad distribution of phenotypes on the efficiency in performing a specific task by a population 
of clonal individuals. They use a cleverly designed microfluidic device and automated data 
collection and analysis to record the motion of thousands of E. coli cells in a channel with a pre-
established gradient of chemoattractant. This allows them to correlate a specific phenotype (tumble 
bias) with the performance (distance travelled up the gradient), using both wild-type cells and a 
strain that expresses the methyltransferase CheR under the control of inducible promoter. They 
showed that both diffusive spreading in absence of a gradient and chemotactic drift were higher for 
low but non-zero tumble bias. They also performed simulations of the chemotactic behavior, in 
excellent agreement with the experimental results. They then used all their data to construct a 
phenotype to performance map, which was non-linear and convex, and concluded that highly 
performing outliers that correspond to very low tumble bias are important in bringing the average 
performance of the population above the performance of the average cell. Notably, this effect could 
be mathematically formalized using Jensen's inequality and it is likely to play a role in many 
biological systems.  
This manuscript is insightful and technically solid and the use of E. coli chemotaxis as a model 
system to address effects of population heterogeneity and cell individuality has an excellent 
tradition. I am confident that this work will be of interest to a general readership of MSB. However, 
I do have several critical comments that need to be addressed before the manuscript is accepted for 
publication.  
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Major point:  
Although it is clear that cell performance in a gradient depends on tumble bias in a non-trivial way, 
this dependence might be more complex than currently suggested by data presentation and at least 
partly indirect. Can the authors clearly distinguish direct dependence of performance on tumble bias 
from dependence on other bias-related behavioral parameters? In this context, titration of the 
adaptation enzyme CheR may not be an ideal way to regulate tumble bias, since levels of CheR 
similarly affect kinetics of adaptation, another key determinant of the chemotactic performance. 
Authors' own previous theoretical work clearly established the importance of the adaptation kinetics 
(i.e, short-term memory) in chemotactic behavior (Emonet & Cluzel, 2008; Frankel et al., 2014). If I 
am not mistaken in my interpretation, computer simulations shown in Frankel et al. (2014) suggest 
that changes in adaptation kinetics due to variation in the levels of adaptation enzymes have even 
stronger effects on performance than changes in tumble bias. Moreover, at low levels of CheR 
tumble bias might not only be low but also highly variable in time, which might itself increase 
efficiency of chemotactic movement (Emonet & Cluzel, 2008).  
Although the main message of the story will remain valid even if the correlation between 
performance and tumble bias is indirect, I think that current focus on tumble bias might be 
potentially misleading. However, this issue could be relatively easily resolved by titrating the 
response regulator CheY, because levels of CheY should tune mean tumble bias without affecting 
the adaptation kinetics or slow methylation-dependent bias fluctuations. I do not ask for redoing all 
experiments at varying levels of CheY, but I believe that an experiment that confirms that the same 
(or similar) performance-phenotype relation is observed when tumble bias is controlled by CheY 
levels would be important for data interpretation.  
 
Minor points:  
- Figure 3D: Although for each induction level of CheR taken separately the performance is ordered 
according to the tumble bias, it appears that the performance is significantly different for a fixed 
range of tumble bias depending on the induction level. Could it be related to effects of CheR on 
parameters other than tumble bias (see comment above)?  
- For both WT and 10uM IPTG induced CheR - and also for DcheY strain as a control - it would be 
interesting to show the distributions of distances past the gate for each subpopulation with a given 
tumble bias, at least at a given time point (e.g. 20 min). Are they self-similar, or is the population 
spreading inherently different for low tumble biases? Only average travelled distances are shown so 
far.  
- Materials and Methods, subsection on data acquisition (Line 378 and following): As far as I 
understand, the whole channel seems to be scanned sequentially using 1 min long movies, the whole 
scan being roughly 10 minutes long. Is it actually the case? This should be described more clearly 
(e.g. how many areas, are they overlapping). Also, the pixel size of the camera is missing.  
- Materials and Methods, line 385: Please give the characteristics of the filters of the YFP block  
- Line 419: typing mistake "track length is is inversely proportional... " 
 
 
1st Revision - authors' response 15 November 2016 

Continued on next page. 
 
 
 
 
 
 
 
 
 
 
 



We would  like  to  thank  the  reviewers  for  their  thoughtful  and  constructive  comments.  We have
addressed each comment/concern in a point-by-point manner below. Text in the manuscript that has
been altered or added to addresses these issues has been colored blue.

Reviewer #1:

The manuscript by Waite et al. aims to understand the connection between non-genetic variability and 
population performance. The specific question is how biological function emerges as a coevolution of 
the distribution of phenotypes and the single-cell performance function. The authors decided to use E. 
coli chemotaxis as a model system since its biased random walk from 'runs' and 'tumbles' is well 
characterized. In particular, the tumble bias (probability to tumble) is used as a read-out of phenotype. 
To investigate performance the authors combine microfluidics, cell tracking, and simulations of 
swimming cells to show that rare phenotypes of low tumble bias strongly improve the population 
performance in terms of chemotactic drift up the gradient. This statement is formalized using Jensen's 
inequality, which says that the average of a convex function (chemotactic drift as a function of tumble 
bias) is larger than the function value of the average. By expressing a key adaptation
enzyme (CheR) from an inducible plasmid, they show that the changes in tumble bias have the 
predicted effect on the drift. While is it well known that chemotactic performance or drift depends on 
tumble bias and level of adaptation enzymes, the manuscript formulates the mapping between 
phenotype variation and population performance in an elegant and clear way. Also the variability of the
single-cell trajectories has not been quantified in the past. The findings of the paper may play a role in 
predicting the time of an infection based on chemotactic variability. The paper is overall convincing 
and well written to interest a broad audience.

Major points: 

What if a different readout of phenotype or performance would have been used? Trivially, if the 
'coherence' of the swimming across the cell population is used as a performance measure, then a broad 
or long-tailed distribution of phenotype is overall bad performance. There might also be concave 
functions where the average of the population performance is below the performance of the average 
cell, e.g. anything related to 'precision'. Hence, it seems very subjective to choose one example which 
'works'. 

The reviewer is right to point out that we focused on one metric to evaluate cell performance. We want 
to clarify that we did not choose this metric because it works. We were interested in chemotactic ability,
and therefore we thought the most natural metric of performance would be how quickly each 
phenotype is able to climb up a gradient of attractant. A main point of the paper is to demonstrate how 
diversity can influence population function, not to show that diversity is necessarily beneficial. We 
fully agree with the reviewer that the paper would benefit from a broader discussion of how the 
phenotype-to-performance map of different tasks (such as those that capture the concept of “precision”)
might display different types of nonlinearities  (concave and convex), and how when the map is 
concave, the average performance of the population should be lower than that of the average 
phenotype. We have added this text to the Discussion section.

The trajectories are rather short (1 min). If trajectories are longer, will rotational diffusion not destroy 
good chemotaxis at low tumble bias? So low tumble bias is not universally good as this depends on 
length scale of interest. 



The characteristic time scale of rotational diffusion for a ~1 μm bacterium is about 8 sec (Dufour et al., 
2014). Recently, we experimentally confirmed that this value is at most 10 seconds (Dufour et al., 
2016). So, an upper bound for track duration of 1 min is long enough to capture the effect of rotational 
diffusion. To check the effect of our minimum trajectory length of 6 seconds, we increased the 
minimum trajectory duration to 20 seconds. This did not destroy the performance of low tumble bias 
cells but instead slightly increased it (Appendix Fig. S4) for reasons that we discuss  in the Analysis of 
trajectories section of the Materials and Methods. Therefore, the observed high performance of low 
tumble bias cells is robust to these changes in quantification parameters. We also show experimentally 
that, when tumble bias goes to zero, performance is degraded in (Fig. 3F) as predicted theoretically 
(Dufour et al., 2014), highlighting that the reviewer’s hypothesized performance decrease is reached in 
our device, but only at zero tumble bias. 

Chemotactic performance also depends on gradient steepness, speed of adaptation, level of CheB 
enzyme, and level of CheY response regulator, just to name a few. However, the roles of these 
parameters are not discussed. Please explain chosen selection of what to consider and what not. 

The reviewer rightfully points out that we did not sufficiently discuss our rationale for our choice of 
parameters. We have added text in various parts of the Introduction and Results sections to address this 
concern. In addition, we have run an entirely new set of experiments where we varied tumble bias by 
manipulating the expression levels of CheY and CheZ instead of CheR and got similar results (Fig. 
EV5), showing that, at least in our experimental conditions, performance is dominated by tumble bias 
and not adaptation time (see also answer to Reviewer #2). 

As for investigating the effect of gradient steepness, our device was designed to generate linear 
gradients and the dimensions of the device reflect compromises between various experimental 
constraints. For example, a longer device would produce a shallower gradient and provide more time to
observe cells, but the gradient would take much longer to equilibrate when setting up the experiment. A
shorter device would provide a steeper gradient and shorter setup times but would reduce the amount of
time we would be able to observe the cells swimming before they reached the top of the gradient.

Are measured trajectories in 2D or 3D? Same question applies to simulations. 

In the experiment, cells swim in 3D (the depth of the observation chamber is 10 μm, which is ~10 times
the size of a cell) but are tracked in 2D. We treat the simulation exactly like the experiment, so there the
cells also swim in 3D constrained by boundaries in the same dimensions as the chamber but are tracked
in 2D.

Is tumble bias measured in a gradient, and if so, tumble bias should change along gradient. How is this 
taken care off? 

The reviewer is correct; the observed tumble bias of a cell will drop relative to its unstimulated tumble 
bias when that cell senses a gradient of attractant. The magnitude of the drop is a function of gradient 
steepness (Dufour et al., 2014).  Since E. coli sense the logarithm of the gradient, the linear gradient in 
our device is perceived as being steepest at the start and shallowest at the end.

We cannot directly measure the unstimulated versus observed tumble bias in the same cells in our 
experiment setup. So, we performed a control simulation using an experimentally-derived gradient 
where all the cells were initialized to be identical and had a known unstimulated tumble bias of 0.23. 



We then plotted the average difference between the observed and unstimulated tumble bias as a 
function of position in the chamber.

As expected, the difference is greatest at the beginning of the gradient where the perceived gradient is 
steepest (Appendix Fig. S3A). However, this rapidly falls to a small, constant difference (-0.004) 
within the first millimeter of the observation chamber. The simulation also suggests that the difference 
between stimulated and unstimulated tumble bias cannot account for the observed differences in 
performance (Appendix Fig. S3B).

We have added this point to the main text of the manuscript.

An earlier model of the group, published in Dufour et al. (2014), does not account for the bias in angles
after a tumble which may increase the drift at high tumble bias. Is this included in the current model? 

Initially, we did not include persistence in our model. We measured the average angular persistence of 
cells in experiments without a gradient or a gate and found that it was very small (mean change in 
angle was 81º). We then verified in simulations that including such small persistence did not change the
results. The difference between our result and the commonly cited value of 62° (Brown and Berg, 1972.
Nature.) could be due to differences in experimental conditions. Brown and Berg used a different 
strain, different growth media, different tracking media, tracked their cells in three dimensions, and 
their cells were not constrained to a 10 μm depth as was the case in our observation chamber.

We have added this information to the “Simulations” section of the Materials and Methods.

Minor points: 

In Fig. 1 B-D it is unclear what the 'distance past gate' means in terms of the schematic of the flow 
chamber in panel A. Please indicate 'distance' and 'gate' in this schematic. 

We have updated Fig. 2A to specify the location of the gate.

Reviewer #2: 

In this paper, the authors use the chemotactic behavior of E. coli as a model to investigate the effect of 
a broad distribution of phenotypes on the efficiency in performing a specific task by a population of 
clonal individuals. They use a cleverly designed microfluidic device and automated data collection and 
analysis to record the motion of thousands of E. coli cells in a channel with a pre-established gradient 
of chemoattractant. This allows them to correlate a specific phenotype (tumble bias) with the 
performance (distance travelled up the gradient), using both wild-type cells and a strain that expresses 
the methyltransferase CheR under the control of inducible promoter. They showed that both diffusive 
spreading in absence of a gradient and chemotactic drift were higher for low but non-zero tumble bias. 
They also performed simulations of the chemotactic behavior, in excellent agreement with the 
experimental results. They then used all their data to construct a phenotype to performance map, which 
was non-linear and convex, and concluded that highly performing outliers that correspond to very low 
tumble bias are important in bringing the average performance of the population above the performance
of the average cell. Notably, this effect could be mathematically formalized using Jensen's inequality 
and it is likely to play a role in many biological systems.

This manuscript is insightful and technically solid and the use of E. coli chemotaxis as a model system 



to address effects of population heterogeneity and cell individuality has an excellent tradition. I am 
confident that this work will be of interest to a general readership of MSB. However, I do have several 
critical comments that need to be addressed before the manuscript is accepted for publication. 

Major point: 
Although it is clear that cell performance in a gradient depends on tumble bias in a non-trivial way, this
dependence might be more complex than currently suggested by data presentation and at least partly 
indirect. Can the authors clearly distinguish direct dependence of performance on tumble bias from 
dependence on other bias-related behavioral parameters? In this context, titration of the adaptation 
enzyme CheR may not be an ideal way to regulate tumble bias, since levels of CheR similarly affect 
kinetics of adaptation, another key determinant of the chemotactic performance. 

We agree with the reviewer’s comment and to address it we have done an entirely new set of 
experiments where, instead of modifying CheR levels, we manipulated CheY/CheZ levels. See also 
answer to the reviewer’s comment about CheY below.

Authors' own previous theoretical work clearly established the importance of the adaptation kinetics 
(i.e, short-term memory) in chemotactic behavior (Emonet & Cluzel, 2008; Frankel et al., 2014). If I 
am not mistaken in my interpretation, computer simulations shown in Frankel et al. (2014) suggest that 
changes in adaptation kinetics due to variation in the levels of adaptation enzymes have even stronger
effects on performance than changes in tumble bias. Moreover, at low levels of CheR tumble bias 
might not only be low but also highly variable in time, which might itself increase efficiency of 
chemotactic movement (Emonet & Cluzel, 2008). 

It is correct that at low levels of CheR expression fluctuations in the methylation-demethylation 
kinetics become larger. For that reason our simulations do include noise in the methylation-
demethylation reactions. 

Regarding the effect of changing adaptation time versus that of changing tumble bias, the situation is 
complicated by the fact that in wild-type cells adaptation time and tumble bias are inversely correlated, 
as shown experimentally in single cells  (Park et al., Nature 2010). This correlation is also maintained 
in the model used for our simulations (Frankel et al. 2014). However, we did examine how these two 
effects affect performance independently of each other in another recent theoretical study (Dufour et 
al., 2014). We found that, in shallow gradients, adaptation time only starts to matter for very low 
tumble bias cells  (see in particular Figure 2A from Dufour et al., 2014) . Thus, for most of the range of 
tumble bias explored in our experiments, the dominant factor that effects performance is predicted to be
tumble bias. 

Although the main message of the story will remain valid even if the correlation between performance 
and tumble bias is indirect, I think that current focus on tumble bias might be potentially misleading. 
However, this issue could be relatively easily resolved by titrating the response regulator CheY, 
because levels of CheY should tune mean tumble bias without affecting the adaptation kinetics or slow 
methylation-dependent bias fluctuations. I do not ask for redoing all experiments at varying levels of 
CheY, but I believe that an experiment that confirms that the same (or similar) performance-phenotype 
relation is observed when tumble bias is controlled by CheY levels would be important for data 
interpretation. 

We agree that our focus on tumble bias as the only important chemotactic phenotype was not the best 
way to present our results, and that both tumble bias and adaptation time could contribute to 



performance. In addition to making this more clear in the Introduction and Results sections (please see 
the response to reviewer 1, above), we followed the reviewer’s suggestion and performed additional 
experiments in a strain where we could control the amount of CheY and CheZ (see Fig. EV5). This 
allowed us to experimentally test low tumble bias cells in a manner that did not also affect adaptation 
time in the way that changing CheR does. When CheY was expressed at low levels relative to CheZ, 
this strain also showed increased performance with decreasing tumble bias similar to low CheR 
expression. We could also see a nonlinear performance increase at low tumble bias at early time points 
in this strain. Thus, tumble bias does appear to be the dominant phenotypic parameter in determining 
performance in shallow gradients.

Minor points: 
- Figure 3D: Although for each induction level of CheR taken separately the performance is ordered 
according to the tumble bias, it appears that the performance is significantly different for a fixed range 
of tumble bias depending on the induction level. Could it be related to effects of CheR on parameters 
other than tumble bias (see comment above)?

We believe the reviewer is referring to the fact that, in Figure 3D, the positions of the high and low 
CheR populations in tumble bias bin 0.05 – 0.15 (green) do not have overlapping error bars. We do not 
know the mechanistic basis for this discrepancy, but the difference is also visible in the spatial 
distributions of the populations (Fig. EV2). It is possible that this is related to effects of CheR on 
parameters others than tumble bias.

- For both WT and 10uM IPTG induced CheR - and also for DcheY strain as a control - it would be 
interesting to show the distributions of distances past the gate for each subpopulation with a given 
tumble bias, at least at a given time point (e.g. 20 min). Are they self-similar, or is the population 
spreading inherently different for low tumble biases? Only average travelled distances are shown so far.

We followed the reviewer’s suggestion and added a figure showing the spatial distribution of each 
tumble bias bin for each pass through the observation for wild-type cells, the high- and low-CheR 
experiments, as well as ΔcheY (we did not split this population into tumble bias bins, as this strain 
cannot tumble). This has been added as Fig. EV2 and is mentioned in the main text.

- Materials and Methods, subsection on data acquisition (Line 378 and following): As far as I 
understand, the whole channel seems to be scanned sequentially using 1 min long movies, the whole 
scan being roughly 10 minutes long. Is it actually the case? This should be described more clearly (e.g. 
how many areas, are they overlapping). Also, the pixel size of the camera is missing.

We apologize for not being clear. We have added a more detailed explanation of the acquisition 
procedure to the Materials and Methods section.

- Materials and Methods, line 385: Please give the characteristics of the filters of the YFP block

We have added this information to the Materials and Methods section.

- Line 419: typing mistake "track length is is inversely proportional... "

Thank you. We have fixed this mistake.
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2nd Editorial Decision 16 November 2016 

Thank you again for sending us your revised manuscript. We are now satisfied with the 
modifications made and I am pleased to inform you that your paper has been accepted for 
publication. 
 
 
 
 
 
 
 
 



USEFUL	
  LINKS	
  FOR	
  COMPLETING	
  THIS	
  FORM

http://www.antibodypedia.com
http://1degreebio.org
http://www.equator-­‐network.org/reporting-­‐guidelines/improving-­‐bioscience-­‐research-­‐reporting-­‐the-­‐arrive-­‐guidelines-­‐for-­‐reporting-­‐animal-­‐research/

http://grants.nih.gov/grants/olaw/olaw.htm
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Useofanimals/index.htm
http://ClinicalTrials.gov
http://www.consort-­‐statement.org
http://www.consort-­‐statement.org/checklists/view/32-­‐consort/66-­‐title

è

http://www.equator-­‐network.org/reporting-­‐guidelines/reporting-­‐recommendations-­‐for-­‐tumour-­‐marker-­‐prognostic-­‐studies-­‐remark/
è

http://datadryad.org
è

http://figshare.com
è

http://www.ncbi.nlm.nih.gov/gap
è

http://www.ebi.ac.uk/ega

http://biomodels.net/

http://biomodels.net/miriam/
è http://jjj.biochem.sun.ac.za
è http://oba.od.nih.gov/biosecurity/biosecurity_documents.html
è http://www.selectagents.gov/
è

è
è

è
è

� common	
  tests,	
  such	
  as	
  t-­‐test	
  (please	
  specify	
  whether	
  paired	
  vs.	
  unpaired),	
  simple	
  χ2	
  tests,	
  Wilcoxon	
  and	
  Mann-­‐Whitney	
  
tests,	
  can	
  be	
  unambiguously	
  identified	
  by	
  name	
  only,	
  but	
  more	
  complex	
  techniques	
  should	
  be	
  described	
  in	
  the	
  methods	
  
section;

� are	
  tests	
  one-­‐sided	
  or	
  two-­‐sided?
� are	
  there	
  adjustments	
  for	
  multiple	
  comparisons?
� exact	
  statistical	
  test	
  results,	
  e.g.,	
  P	
  values	
  =	
  x	
  but	
  not	
  P	
  values	
  <	
  x;
� definition	
  of	
  ‘center	
  values’	
  as	
  median	
  or	
  average;
� definition	
  of	
  error	
  bars	
  as	
  s.d.	
  or	
  s.e.m.	
  

1.a.	
  How	
  was	
  the	
  sample	
  size	
  chosen	
  to	
  ensure	
  adequate	
  power	
  to	
  detect	
  a	
  pre-­‐specified	
  effect	
  size?

1.b.	
  For	
  animal	
  studies,	
  include	
  a	
  statement	
  about	
  sample	
  size	
  estimate	
  even	
  if	
  no	
  statistical	
  methods	
  were	
  used.

2.	
  Describe	
  inclusion/exclusion	
  criteria	
  if	
  samples	
  or	
  animals	
  were	
  excluded	
  from	
  the	
  analysis.	
  Were	
  the	
  criteria	
  pre-­‐
established?

3.	
  Were	
  any	
  steps	
  taken	
  to	
  minimize	
  the	
  effects	
  of	
  subjective	
  bias	
  when	
  allocating	
  animals/samples	
  to	
  treatment	
  (e.g.	
  
randomization	
  procedure)?	
  If	
  yes,	
  please	
  describe.	
  

For	
  animal	
  studies,	
  include	
  a	
  statement	
  about	
  randomization	
  even	
  if	
  no	
  randomization	
  was	
  used.

4.a.	
  Were	
  any	
  steps	
  taken	
  to	
  minimize	
  the	
  effects	
  of	
  subjective	
  bias	
  during	
  group	
  allocation	
  or/and	
  when	
  assessing	
  results	
  
(e.g.	
  blinding	
  of	
  the	
  investigator)?	
  If	
  yes	
  please	
  describe.

4.b.	
  For	
  animal	
  studies,	
  include	
  a	
  statement	
  about	
  blinding	
  even	
  if	
  no	
  blinding	
  was	
  done

5.	
  For	
  every	
  figure,	
  are	
  statistical	
  tests	
  justified	
  as	
  appropriate?

Do	
  the	
  data	
  meet	
  the	
  assumptions	
  of	
  the	
  tests	
  (e.g.,	
  normal	
  distribution)?	
  Describe	
  any	
  methods	
  used	
  to	
  assess	
  it.

Is	
  there	
  an	
  estimate	
  of	
  variation	
  within	
  each	
  group	
  of	
  data?

Is	
  the	
  variance	
  similar	
  between	
  the	
  groups	
  that	
  are	
  being	
  statistically	
  compared?

C-­‐	
  Reagents

No

NA

Yes

NA

NA

NA

Please	
  fill	
  out	
  these	
  boxes	
  ê	
  (Do	
  not	
  worry	
  if	
  you	
  cannot	
  see	
  all	
  your	
  text	
  once	
  you	
  press	
  return)

We	
  performed	
  at	
  least	
  two	
  experiments,	
  each	
  providing	
  information	
  about	
  5,000	
  –	
  10,000	
  cells.

NA

For	
  each	
  experiment,	
  we	
  had	
  many	
  diagnostic	
  critera	
  to	
  determine	
  whether	
  the	
  experiment	
  
worked.	
  We	
  checked	
  that	
  1)	
  the	
  overall	
  tumble	
  bias	
  did	
  not	
  change	
  much	
  over	
  time,	
  2)	
  the	
  
gradient	
  shape	
  was	
  consistent,	
  3)	
  cell	
  counts	
  and	
  speed	
  were	
  consistent,	
  4)	
  there	
  was	
  no	
  evidence	
  
of	
  warping	
  of	
  the	
  PDMS	
  chamber	
  due	
  to	
  evaporation.
NA

NA

a	
  statement	
  of	
  how	
  many	
  times	
  the	
  experiment	
  shown	
  was	
  independently	
  replicated	
  in	
  the	
  laboratory.
definitions	
  of	
  statistical	
  methods	
  and	
  measures:

Any	
  descriptions	
  too	
  long	
  for	
  the	
  figure	
  legend	
  should	
  be	
  included	
  in	
  the	
  methods	
  section	
  and/or	
  with	
  the	
  source	
  data.

Please	
  ensure	
  that	
  the	
  answers	
  to	
  the	
  following	
  questions	
  are	
  reported	
  in	
  the	
  manuscript	
  itself.	
  We	
  encourage	
  you	
  to	
  include	
  a	
  
specific	
  subsection	
  in	
  the	
  methods	
  section	
  for	
  statistics,	
  reagents,	
  animal	
  models	
  and	
  human	
  subjects.	
  	
  

In	
  the	
  pink	
  boxes	
  below,	
  provide	
  the	
  page	
  number(s)	
  of	
  the	
  manuscript	
  draft	
  or	
  figure	
  legend(s)	
  where	
  the	
  
information	
  can	
  be	
  located.	
  Every	
  question	
  should	
  be	
  answered.	
  If	
  the	
  question	
  is	
  not	
  relevant	
  to	
  your	
  research,	
  
please	
  write	
  NA	
  (non	
  applicable).

B-­‐	
  Statistics	
  and	
  general	
  methods

a	
  specification	
  of	
  the	
  experimental	
  system	
  investigated	
  (eg	
  cell	
  line,	
  species	
  name).
the	
  assay(s)	
  and	
  method(s)	
  used	
  to	
  carry	
  out	
  the	
  reported	
  observations	
  and	
  measurements	
  
an	
  explicit	
  mention	
  of	
  the	
  biological	
  and	
  chemical	
  entity(ies)	
  that	
  are	
  being	
  measured.
an	
  explicit	
  mention	
  of	
  the	
  biological	
  and	
  chemical	
  entity(ies)	
  that	
  are	
  altered/varied/perturbed	
  in	
  a	
  controlled	
  manner.

the	
  exact	
  sample	
  size	
  (n)	
  for	
  each	
  experimental	
  group/condition,	
  given	
  as	
  a	
  number,	
  not	
  a	
  range;
a	
  description	
  of	
  the	
  sample	
  collection	
  allowing	
  the	
  reader	
  to	
  understand	
  whether	
  the	
  samples	
  represent	
  technical	
  or	
  
biological	
  replicates	
  (including	
  how	
  many	
  animals,	
  litters,	
  cultures,	
  etc.).

figure	
  panels	
  include	
  only	
  data	
  points,	
  measurements	
  or	
  observations	
  that	
  can	
  be	
  compared	
  to	
  each	
  other	
  in	
  a	
  scientifically	
  
meaningful	
  way.
graphs	
  include	
  clearly	
  labeled	
  error	
  bars	
  for	
  independent	
  experiments	
  and	
  sample	
  sizes.	
  Unless	
  justified,	
  error	
  bars	
  should	
  
not	
  be	
  shown	
  for	
  technical	
  replicates.
if	
  n<	
  5,	
  the	
  individual	
  data	
  points	
  from	
  each	
  experiment	
  should	
  be	
  plotted	
  and	
  any	
  statistical	
  test	
  employed	
  should	
  be	
  
justified
Source	
  Data	
  should	
  be	
  included	
  to	
  report	
  the	
  data	
  underlying	
  graphs.	
  Please	
  follow	
  the	
  guidelines	
  set	
  out	
  in	
  the	
  author	
  ship	
  
guidelines	
  on	
  Data	
  Presentation.

2.	
  Captions

Each	
  figure	
  caption	
  should	
  contain	
  the	
  following	
  information,	
  for	
  each	
  panel	
  where	
  they	
  are	
  relevant:

Reporting	
  Checklist	
  For	
  Life	
  Sciences	
  Articles	
  (Rev.	
  July	
  2015)

This	
  checklist	
  is	
  used	
  to	
  ensure	
  good	
  reporting	
  standards	
  and	
  to	
  improve	
  the	
  reproducibility	
  of	
  published	
  results.	
  These	
  guidelines	
  are	
  
consistent	
  with	
  the	
  Principles	
  and	
  Guidelines	
  for	
  Reporting	
  Preclinical	
  Research	
  issued	
  by	
  the	
  NIH	
  in	
  2014.	
  Please	
  follow	
  the	
  journal’s	
  
authorship	
  guidelines	
  in	
  preparing	
  your	
  manuscript.	
  	
  

A-­‐	
  Figures	
  
1.	
  Data
The	
  data	
  shown	
  in	
  figures	
  should	
  satisfy	
  the	
  following	
  conditions:

the	
  data	
  were	
  obtained	
  and	
  processed	
  according	
  to	
  the	
  field’s	
  best	
  practice	
  and	
  are	
  presented	
  to	
  reflect	
  the	
  results	
  of	
  the	
  
experiments	
  in	
  an	
  accurate	
  and	
  unbiased	
  manner.

EMBO	
  PRESS	
  

YOU	
  MUST	
  COMPLETE	
  ALL	
  CELLS	
  WITH	
  A	
  PINK	
  BACKGROUND	
  ê
PLEASE	
  NOTE	
  THAT	
  THIS	
  CHECKLIST	
  WILL	
  BE	
  PUBLISHED	
  ALONGSIDE	
  YOUR	
  PAPER
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6.	
  To	
  show	
  that	
  antibodies	
  were	
  profiled	
  for	
  use	
  in	
  the	
  system	
  under	
  study	
  (assay	
  and	
  species),	
  provide	
  a	
  citation,	
  catalog	
  
number	
  and/or	
  clone	
  number,	
  supplementary	
  information	
  or	
  reference	
  to	
  an	
  antibody	
  validation	
  profile.	
  e.g.,	
  
Antibodypedia	
  (see	
  link	
  list	
  at	
  top	
  right),	
  1DegreeBio	
  (see	
  link	
  list	
  at	
  top	
  right).

7.	
  Identify	
  the	
  source	
  of	
  cell	
  lines	
  and	
  report	
  if	
  they	
  were	
  recently	
  authenticated	
  (e.g.,	
  by	
  STR	
  profiling)	
  and	
  tested	
  for	
  
mycoplasma	
  contamination.

*	
  for	
  all	
  hyperlinks,	
  please	
  see	
  the	
  table	
  at	
  the	
  top	
  right	
  of	
  the	
  document

8.	
  Report	
  species,	
  strain,	
  gender,	
  age	
  of	
  animals	
  and	
  genetic	
  modification	
  status	
  where	
  applicable.	
  Please	
  detail	
  housing	
  
and	
  husbandry	
  conditions	
  and	
  the	
  source	
  of	
  animals.

9.	
  For	
  experiments	
  involving	
  live	
  vertebrates,	
  include	
  a	
  statement	
  of	
  compliance	
  with	
  ethical	
  regulations	
  and	
  identify	
  the	
  
committee(s)	
  approving	
  the	
  experiments.

10.	
  We	
  recommend	
  consulting	
  the	
  ARRIVE	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  (PLoS	
  Biol.	
  8(6),	
  e1000412,	
  2010)	
  to	
  ensure	
  
that	
  other	
  relevant	
  aspects	
  of	
  animal	
  studies	
  are	
  adequately	
  reported.	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  
Guidelines’.	
  See	
  also:	
  NIH	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  MRC	
  (see	
  link	
  list	
  at	
  top	
  right)	
  recommendations.	
  	
  Please	
  confirm	
  
compliance.

11.	
  Identify	
  the	
  committee(s)	
  approving	
  the	
  study	
  protocol.

12.	
  Include	
  a	
  statement	
  confirming	
  that	
  informed	
  consent	
  was	
  obtained	
  from	
  all	
  subjects	
  and	
  that	
  the	
  experiments	
  
conformed	
  to	
  the	
  principles	
  set	
  out	
  in	
  the	
  WMA	
  Declaration	
  of	
  Helsinki	
  and	
  the	
  Department	
  of	
  Health	
  and	
  Human	
  
Services	
  Belmont	
  Report.

13.	
  For	
  publication	
  of	
  patient	
  photos,	
  include	
  a	
  statement	
  confirming	
  that	
  consent	
  to	
  publish	
  was	
  obtained.

14.	
  Report	
  any	
  restrictions	
  on	
  the	
  availability	
  (and/or	
  on	
  the	
  use)	
  of	
  human	
  data	
  or	
  samples.

15.	
  Report	
  the	
  clinical	
  trial	
  registration	
  number	
  (at	
  ClinicalTrials.gov	
  or	
  equivalent),	
  where	
  applicable.

16.	
  For	
  phase	
  II	
  and	
  III	
  randomized	
  controlled	
  trials,	
  please	
  refer	
  to	
  the	
  CONSORT	
  flow	
  diagram	
  (see	
  link	
  list	
  at	
  top	
  right)	
  
and	
  submit	
  the	
  CONSORT	
  checklist	
  (see	
  link	
  list	
  at	
  top	
  right)	
  with	
  your	
  submission.	
  See	
  author	
  guidelines,	
  under	
  
‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  submitted	
  this	
  list.

17.	
  For	
  tumor	
  marker	
  prognostic	
  studies,	
  we	
  recommend	
  that	
  you	
  follow	
  the	
  REMARK	
  reporting	
  guidelines	
  (see	
  link	
  list	
  at	
  
top	
  right).	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  followed	
  these	
  guidelines.

18.	
  Provide	
  accession	
  codes	
  for	
  deposited	
  data.	
  See	
  author	
  guidelines,	
  under	
  ‘Data	
  Deposition’.

Data	
  deposition	
  in	
  a	
  public	
  repository	
  is	
  mandatory	
  for:
a.	
  Protein,	
  DNA	
  and	
  RNA	
  sequences
b.	
  Macromolecular	
  structures
c.	
  Crystallographic	
  data	
  for	
  small	
  molecules
d.	
  Functional	
  genomics	
  data	
  
e.	
  Proteomics	
  and	
  molecular	
  interactions
19.	
  Deposition	
  is	
  strongly	
  recommended	
  for	
  any	
  datasets	
  that	
  are	
  central	
  and	
  integral	
  to	
  the	
  study;	
  please	
  consider	
  the	
  
journal’s	
  data	
  policy.	
  If	
  no	
  structured	
  public	
  repository	
  exists	
  for	
  a	
  given	
  data	
  type,	
  we	
  encourage	
  the	
  provision	
  of	
  
datasets	
  in	
  the	
  manuscript	
  as	
  a	
  Supplementary	
  Document	
  (see	
  author	
  guidelines	
  under	
  ‘Expanded	
  View’	
  or	
  in	
  
unstructured	
  repositories	
  such	
  as	
  Dryad	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  Figshare	
  (see	
  link	
  list	
  at	
  top	
  right).
20.	
  Access	
  to	
  human	
  clinical	
  and	
  genomic	
  datasets	
  should	
  be	
  provided	
  with	
  as	
  few	
  restrictions	
  as	
  possible	
  while	
  
respecting	
  ethical	
  obligations	
  to	
  the	
  patients	
  and	
  relevant	
  medical	
  and	
  legal	
  issues.	
  If	
  practically	
  possible	
  and	
  compatible	
  
with	
  the	
  individual	
  consent	
  agreement	
  used	
  in	
  the	
  study,	
  such	
  data	
  should	
  be	
  deposited	
  in	
  one	
  of	
  the	
  major	
  public	
  access-­‐
controlled	
  repositories	
  such	
  as	
  dbGAP	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  EGA	
  (see	
  link	
  list	
  at	
  top	
  right).
21.	
  As	
  far	
  as	
  possible,	
  primary	
  and	
  referenced	
  data	
  should	
  be	
  formally	
  cited	
  in	
  a	
  Data	
  Availability	
  section.	
  Please	
  state	
  
whether	
  you	
  have	
  included	
  this	
  section.

Examples:
Primary	
  Data
Wetmore	
  KM,	
  Deutschbauer	
  AM,	
  Price	
  MN,	
  Arkin	
  AP	
  (2012).	
  Comparison	
  of	
  gene	
  expression	
  and	
  mutant	
  fitness	
  in	
  
Shewanella	
  oneidensis	
  MR-­‐1.	
  Gene	
  Expression	
  Omnibus	
  GSE39462
Referenced	
  Data
Huang	
  J,	
  Brown	
  AF,	
  Lei	
  M	
  (2012).	
  Crystal	
  structure	
  of	
  the	
  TRBD	
  domain	
  of	
  TERT	
  and	
  the	
  CR4/5	
  of	
  TR.	
  Protein	
  Data	
  Bank	
  
4O26
AP-­‐MS	
  analysis	
  of	
  human	
  histone	
  deacetylase	
  interactions	
  in	
  CEM-­‐T	
  cells	
  (2013).	
  PRIDE	
  PXD000208
22.	
  Computational	
  models	
  that	
  are	
  central	
  and	
  integral	
  to	
  a	
  study	
  should	
  be	
  shared	
  without	
  restrictions	
  and	
  provided	
  in	
  a	
  
machine-­‐readable	
  form.	
  	
  The	
  relevant	
  accession	
  numbers	
  or	
  links	
  should	
  be	
  provided.	
  When	
  possible,	
  standardized	
  
format	
  (SBML,	
  CellML)	
  should	
  be	
  used	
  instead	
  of	
  scripts	
  (e.g.	
  MATLAB).	
  Authors	
  are	
  strongly	
  encouraged	
  to	
  follow	
  the	
  
MIRIAM	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  deposit	
  their	
  model	
  in	
  a	
  public	
  database	
  such	
  as	
  Biomodels	
  (see	
  link	
  list	
  
at	
  top	
  right)	
  or	
  JWS	
  Online	
  (see	
  link	
  list	
  at	
  top	
  right).	
  If	
  computer	
  source	
  code	
  is	
  provided	
  with	
  the	
  paper,	
  it	
  should	
  be	
  
deposited	
  in	
  a	
  public	
  repository	
  or	
  included	
  in	
  supplementary	
  information.

23.	
  Could	
  your	
  study	
  fall	
  under	
  dual	
  use	
  research	
  restrictions?	
  Please	
  check	
  biosecurity	
  documents	
  (see	
  link	
  list	
  at	
  top	
  
right)	
  and	
  list	
  of	
  select	
  agents	
  and	
  toxins	
  (APHIS/CDC)	
  (see	
  link	
  list	
  at	
  top	
  right).	
  According	
  to	
  our	
  biosecurity	
  guidelines,	
  
provide	
  a	
  statement	
  only	
  if	
  it	
  could.

NA

NA

Link	
  to	
  new	
  source	
  code	
  is	
  in	
  manuscript.

G-­‐	
  Dual	
  use	
  research	
  of	
  concern

No

NA

NA

NA

F-­‐	
  Data	
  Accessibility

NA

NA

E-­‐	
  Human	
  Subjects

NA

NA

NA

NA

NA

NA

D-­‐	
  Animal	
  Models

NA

NA


