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I. Reduction of the 12 ×  12 linear four-site mechanism evolution matrix to a 3 ×  3 matrix 

The evolution matrix for the linear four-site exchange mechanism is: 
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 (S1) 

 
The first application of the matrix determinant lemma yields:    
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The second application of the matrix determinant lemma yields: 
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The third and last application of the matrix determinant lemma yields: 
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Expanding the above expression and collecting powers of λ yields: 
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Keeping only the three lowest order terms in λ yields Eq. (42). 
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II. Woodbury approximation for the triangular three-site scheme 

In the following, “first” refers to the first order approximation, “second” to the second 

order approximation. The first order approximation of Rex in a triangular three-site exchange 

situation can be written as (Eq. 48) 

{ }
, ,

2 ,

1
1 sin

triang first linear first
ex ex linear first

ex

R R
R Trθ

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦Z
  (S6)  

The inverse of Rex is: 

{ }2 ,
, ,

1 1 1 sin linear first
extriang first linear first

ex ex

R Tr
R R

θ⎡ ⎤= +⎣ ⎦Z   (S7) 

The absolute value of differences of reciprocal Rex values can be used to obtain a new 

approximation for ,triang exact
exR , which we call ,triang new

exR : 

{ }

, , , ,

2
, , ,

1 1 1 1

1 1 1 11 sin

triang new triang exact triang first triang exact
ex ex ex ex

b triang exact triang first triang exact
a ex ex ex

R R R R

R Tr
R R R R

θ

− < −

⎡ ⎤⇔ + − < −⎣ ⎦Z
 (S8) 

in which Ra and Rb must be determined and in which vertical bars denote absolute values. The 

two cases in which ,triang new
exR  is smaller or larger than ,triang exact

exR  must be considered separately. 

Note that , ,triang exact triang first
ex exR R> and , ,linear exact linear first

ex exR R> . 

{ }

{ }

, , , ,

2
, , ,

2
,

In the first case,  and :
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⎡ ⎤⇔ + <⎣ ⎦

Z

Z

 (S9) 

Setting Ra to ,linear exact
exR  and Rb to ,linear first

exR  yields 
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, ,
, ,

1 1 linear exact linear first
ex exlinear exact linear first

ex ex

R R
R R

< ⇔ >  (S10) 

which is true as noted above. Setting both Ra and Rb to ,linear exact
exR  usually violates the condition 

, ,triang new triang exact
ex exR R< , as shown empirically.  
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, , , ,

2
, , ,

, ,
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Z
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n
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θ⎡ ⎤⎣ ⎦
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⎣ ⎦

Z  (S11)  

Again, setting Ra = ,linear exact
exR  and Rb= ,linear first

exR  yields: 

,

, , , , , ,

,

, , , ,

2 1 1 1

2 1

linear first
ex

triang exact triang first linear exact linear exact triang first linear exact
ex ex ex ex ex ex

linear first
ex
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ex ex ex ex
tri
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R R R R R R
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⇔
, ,

, ,

1
22
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ex
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ex ex

R
R R

< +

 (S12) 

which establishes a boundary condition that is frequently, but not always met. In contrast, setting 

a= ,linear exact
exR  and b= ,linear exact

exR lead to a boundary condition, which is, as empirically shown, 

usually not met: 
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, , , , ,

, , , ,

, ,

2 1 1 1 1

2 1 2 1

1 1 12

triang exact triang first linear exact triang first linear first
ex ex ex ex ex

triang exact linear first triang first linear exact
ex ex ex ex

triang exact triang first li
ex ex ex

R R R R R

R R R R

R R R
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⎛ ⎞
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⎝ ⎠
, ,

1
near exact linear first

exR
−

 (S13) 

The new approximation for the triangular three-site scheme performs better than the first-order 

approximation if the boundary condition Eq. S12 is met. 

As a result of the above considerations, the new approximation for Rex is: 

{ }
, ,

2 ,

1
1 sin

triang new linear exact
ex ex linear first

ex

R R
R Trθ

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦Z  (S14) 

and ,linear exact
exR  can be substituted by   Rex

linear ,second , giving the Woodbury approximation: 

{ }
, ,

2 ,

1
1 sin

triang Woodbury linear second
ex ex linear first

ex

R R
R Trθ

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦Z
 (S15) 
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III. Fitting three-state models 

Aspects of using the above expressions for fitting to experimental data are described 

below for three-state models; extension to more complex topologies are straightforward. The 

exchange contribution to relaxation is 

( ){ }12sin 1 /exR Trλ θ
−

− = = − +L K  (S16) 

and for a triangular three-state model, 

  

L =

L A 0 0
0 LB 0
0 0 LC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 
 (S17) 

in which 

  

LA =

0 −δ A 0

δ A 0 −ω1

0 ω1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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⎡
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⎢
⎢
⎢
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⎥
⎥
⎥
⎥
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⎢
⎢
⎢
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⎥
⎥
⎥
⎥
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⎢
⎢
⎢
⎢
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⎦

⎥
⎥
⎥
⎥
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⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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⎡

⎣

⎢
⎢
⎢
⎢
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⎦

⎥
⎥
⎥
⎥

 (S18) 
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p p p p
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⎢ ⎥= − − ⊗⎢ ⎥
⎢ ⎥− −⎣ ⎦

− −⎡
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− − − −⎣

K I

⎤
⎥
⎥
⎥

⎢ ⎥ ⊗
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

I

  (S19) 

ΩmA = Ωm − ΩA, kAB = k12+ k21, kAC = k13+ k31, and kBC = k23+ k32.  

In the above equations, the known quantities are ΔΩ and ω1; the parameters to be 

optimized are pA, pB, ΩAB, ΩAC, kAB, kAC, and kBC. Use of these variables incorporates the 

constraints that pA+pB+pC = 1 and that the change in free-energy around the reaction cycle must 

be zero (which constrains k23/k32 given the other rate constants). The exchange matrix for the 

linear three-site model in which A is the middle state (A exchanges with B and C) is obtained by 

setting kBC = 0. The exchange matrix for the linear three-site model in which A is the end state (A 

exchanges with B and B exchanges with C) is obtained by setting kAC = 0. In practice, 

independent estimates of some of these parameters, such as limiting chemical shifts, may be 

necessary to reduce the complexity of data fitting. The derivative of sin2θ Rex with respect to a 

parameter x is: 

   

d sin2θRex( )
dx

=

Tr L +K( )−2 d L +K( )
dx

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Tr 2 L +K( )−1{ }  (S20) 

which is needed for gradient-based optimization methods. The derivative on the right-hand-side 

of Eq. S20 is obtained analytically from Eqs. S16-S19. For example, 
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A

BA

B

BA BA

C

BA

d
d

d d
d d

d
d

⎡ ⎤
⎢ ⎥Ω⎢ ⎥
⎢ ⎥+

= ⎢ ⎥
Ω Ω⎢ ⎥

⎢ ⎥
⎢ ⎥

Ω⎢ ⎥⎣ ⎦

L 0 0

L K L0 0

L
0 0

 
(S21) 
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As another example, 

   

d(L +K)
dkAB

= 1
pA + pB

− pB pA 0

pB − pA 0

0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗ I
 

(S23) 

Note that Equations S16 and S20 are not expanded analytically (that is, algebraic expressions for 

the matrix inverses are not needed); rather, numerical values are calculated for each combination 

of parameters directly from these equations. 
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IV. Supplemental Figure Captions 

Figure S1. R1ρ magnetization decay for two-site chemical exchange. Calculations were 

performed by numerical evaluation of the integrated Bloch-McConnell equation for each decay 

component in Eq. 6, using    ai = d ui ui
−1 M(0) . Parameters used for the calculations were pA = 

0.5, pB = 0.5, ω1 = 100 s–1, ΩB – ΩA = 1000 s–1, ΔΩ = 500 s–1, R1 = 1.5 s–1, R2 = 11 s–1 and kex = k12 + 

k21 = 1000 s–1. Magnetization decay for the components associated with the (a) least negative, real 

eigenvalue and (b) the second real eigenvalue. (c) and (d) Real-valued magnetization decays 

obtained by addition of pairs of components for complex conjugate eigenvalues.  

Figure S2. Offset dependence of the Rex contribution to R1ρ for three-site exchange in the strong 

field limit. (Solid) Numerical calculation of Rex = –λ/sin2θ from the least negative real eigenvalue 

of the 9 × 9 evolution matrix, (dashed) calculation from the first-order approximation from Eqs. 

11 , and (dotted) calculation from the second-order approximation from Eqs. 29 and 40. To 

center the graph, parameters were chosen so that δA =  ΔΩ. Parameters used for the calculations 

were pA = 0.85, pB = 0.10, pC = 0.05, k12+k21 = 1550 s-1, k13+k31 = 2500 s-1, ω1 = 1250 s-1, ΩB – ΩA 

= 750 s-1, ΩC – ΩA = –1500 s-1. 

Figure S3. Offset dependence of the Rex contribution to R1ρ for linear three-site exchange in 

which the sites exchange in different exchange regimes. (Solid) Numerical calculation of Rex = –

λ/sin2θ from the least negative real eigenvalue of the 9 × 9 evolution matrix, (dashed) calculation 

from the first-order approximation from Eqs. 11, and (dotted) calculation from the second-order 

approximation from Eqs. 29 and 40. The inset exemplifies a region in which the results of the 

calculations differ. To center the graph, parameters were chosen so that δA =  ΔΩ. Parameters 

used for the calculations were (in partial analogy to Fig. 2) pA = 0.95, pB = 0.035, pC=0.015, 

k12+k21 = 200 s–1, k13+k31 = 5000 s–1, ω1= 500 s–1, ΩB – ΩA = 1500 s–1, ΩC – ΩA = –3500 s-1. 
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Figure S4. Second-order approximations of R1ρ linear three-site exchange at different dominant 

site populations. (Left) Actual  R1ρ plots, (Right) absolute difference between exact numerical 

and approximate results. (Solid) Numerical calculation of the least negative real eigenvalue of 

the 9 × 9 evolution matrix, (dashed) calculation from the second-order approximation from Eqs. 

29 and 40, using Reff from Eq. 13, (dotted) calculation from the second-order approximation from 

Eqs. 29 and 40, using Reff from Eq. 12, (dashed-dotted) calculation from the second-order 

approximation from Eqs. 29 and 40, but replacing kʹ′L  with kʹ′ +L R  in Eq. 40 and not using Reff. 

To center the graph, parameters were chosen so that δA =  ΔΩ. Parameters used for calculation: pB 

= pC = (1–pA)/2, k12+k21 = 100 s–1, k13+k31 = 100    s–1, ω1= 50 s–1, ΩB – ΩA = –300 s–1, ΩC – ΩA = 

300 s–1, R1 = 1 s–1, R2 = 6 s–1. (a) pA = 0.33; (b) pA = 0.9. 

Figure S5. Rex contribution to R1ρ in triangular 3-state chemical exchange. To center the graph, 

parameters were chosen so that δA =  ΔΩ. Parameters used for all calculations were pA = 0.85, pB 

= 0.1, pC = 0.05, k12+k21 = 50 s–1, k13+k31 = 2000 s–1, ΩB – ΩA = –1000 s–1, ΩC – ΩA = 2000 s–1
,
 ω1 = 

500 s–1. Left: Triangular 3-state chemical exchange scheme and approximations of the Rex 

contribution. (Solid) Numerical calculation of Rex = –λ/sin2θ from the least negative real 

eigenvalue of the 9 × 9 evolution matrix, (dashed) calculation from the first order approximation 

(Eq. 11), (dotted) calculation from the Woodbury approximation (Eq. 50), (dashed-dotted) 

calculation from a less well performing variation of the Woodbury approximation in which all 

first order terms are replaced by second order terms; additional parameter: k23+k32 = 700 s–1. 

Right: Difference in error (approximation – numerical value) between the Woodbury 

approximation and the first order approximation. Values greater than 0 mean that the first order 

approximation is more accurate than the Woodbury approximation. The value of k23+k32 has been 

varied. Smaller rate constants for k23+k32, relative to the other kinetic rate constants, give a more 

accurate Woodbury approximation. 
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Figure S6. Approximations for the pseudo-kite 4-site scheme at different population levels. To 

center the graph, parameters were chosen so that δA =  ΔΩ. Parameters used for all calculations 

were pB = 10/16·(1 – pA), pC = 5/16·(1 – pA), pD = 1/16·(1 – pA), k21+k12 = 140 s–1, k31+k13 = 350 s−1, 

k43+k34 = 700 s–1, k41+k14 (non-linear fragment) = 350 s–1, ΩB – ΩA = –850 s–1, ΩC – ΩA = 2550 s–1
, 

ΩD – ΩA = −4250 s–1
, ω1 = 350 s–1. Left: 2-dimensional plots showing the performance of the 

approximations at three different population scenarios. (Solid) Numerical calculation of Rex = –

λ/sin2θ from the least negative real eigenvalue of the 12 × 12 evolution matrix of the pseudo-kite 

four-site scheme, (dashed) calculation from the first order approximation from Eq. 11, (dotted) 

Woodbury approximation (Eq. 50). Right: 3-dimensional plots showing the performance of the 

approximations at three different population scenarios (0.2 ≤ pA ≤ 0.99). The absolute differences 

between the numerical result and the first-order approximation (top) and the Woodbury 

approximation are plotted. 

Figure S7. Use of pseudo-sites to calculate the Woodbury approximation for complex schemes. 

Top: A pseudo-kite 4-site scheme (grey: non-linear component of the scheme) can be collapsed 

to a linear three-site scheme. In this example, D* is the pseudo-site which has the same chemical 

shift as site A. The population in D* can be set low and pseudo-exchange rates between A and D 

can be set to very large numbers. Middle: Equivalence of the linear three-site scheme and the 

pseudo-kite 4-site scheme. (Solid) Numerical calculation of Rex = –λ/sin2θ from the least negative 

real eigenvalue of the 12 × 12 evolution matrix of the pseudo-kite four-site scheme, (dashed – 

overlapping with solid) numerical calculation of the 9 × 9 evolution matrix of the linear three-

site scheme, (dotted) Woodbury approximation (Eq. 50) of the pseudo-kite four-site scheme. To 

center the graph, parameters were chosen so that δA =  ΔΩ. Parameters used for all calculations 

were pB = 0.1, pC = 0.05, k12+k21 = 10 s–1, k12+k21 = 500 s–1, ω1= 100 s–1, ΩB – ΩA = –500 s–1,  ΩC – 

ΩA = 200 s–1. Additional parameters for three-site scheme: pA = 0.85. Additional parameters for 

four-site scheme: pA = 0.84999, pD = 0.00001, k14+k41 = 10000 s–1, k34+k43 = 10000 s–1, ΩD – ΩA = 
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0 s–1. Bottom: A pseudo-kite 5-site system can be used to obtain the Woodbury approximation 

for a star four-site system (grey: non-linear component of the scheme).  
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