
Analysis of practical identifiability of a viral infection model

Van Kinh Nguyen1,2,3, Frank Klawonn4,5, Rafael Mikolajczyk6,7,8,9, Esteban A.

Hernandez-Vargas1,*

1 Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig

Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, 2

Epidemiology Department, Ho Chi Minh University of Medicine and Pharmacy, Ho Chi Minh, Vietnam. 3

PhD Programme “Epidemiology”, Braunschweig-Hannover, Germany 4 Biostatistics, Helmholtz Centre for

Infection Research, Braunschweig, Germany, 5 Department of Computer Science, Ostfalia University,
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S2 Text

Implementation of Adaptive Metropolis-Hasting in ODE models. A realistic

dataset with five replicates per time point and collection time scheme as in [1] was gener-

ated. The model was parameterized in log 10 space. A multivariate normal distribution

N(θ, c2Σ) and a uniform prior U(0, 1) are used as proposals for the model parameters

and measurement error, respectively. The target acceptance rate for measurement error

and the four model parameters is 0.45 and 0.35 [4], respectively. The initial scale of

the model parameters covariance matrix is c2 = 2.382/d, where d = 4 is the number of

parameters [4]. The following tuning steps [5] are done during the tuning phase to reach

within a small tolerance of the target acceptance rate (±0.075): (1) The scale parameter

c is adjusted as a function of the observed and the target acceptance rate as in [2, 3],

(2) the covariance matrix is tuned by taking the weighted average of the covariance

matrix observed between one loop to the previous. The weight of 0.75 is chosen to put

more weight on the observed one, (3) burn-in period of size 5000 and 1000 posterior

samples are used resulting in 5000 samples (thinning rate is 10). Three MCMC chains

starting from different proposal values are run. Four tuning loops with five hundred

iterations each are needed to reach the target acceptance rate. The code skeleton can be

found on-line at this link.
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Figure T2. Trace-plots and posterior density of the four parameters in the
target cell model. Applying Metropolis–Hasting (MH) in a realistic dataset with five
replicates per time point and collection time scheme as in [1]. The pB, pD, pP, pC, and
sd are β, δ, p, c and the standard deviation of the imposed measurement error. The
adaptive Metropolis-Hasting algorithm is used.
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