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Supplementary Methods

Simulated data with correlated, trajectory-dependent noise

To simulate noise structures that correlate with the trajectory and that change throughout
the progression (as would occur when gene networks rewire from one state to the next), we
simulated two gene-gene networks, Netstart and Netend using a Watts-Strogatz model with
3 connected neighbors and a 0.2 probability of edge reassignment. For a constant factor α
and for each network, we simulated a covariance matrix Σnet as follows: for each edge in
the network and for each element in the diagonal, we set the corresponding entry in Σnet

to a random value drawn from a Gaussian distribution centered at zero and with standard
deviation α. To ensure positive-definitiveness, we squared all elements in the diagonal and
added to each a factor n × α with n being the minimum non-negative integer such that
Σnet is numerically positive definite. We then simulated a covariance matrix function with
initial values set to the the associated covariance matrix of Netstart and with a final matrix
values corresponding to the associated covariance matrix of Netend. To obtain this simulated
matrix function while maintaining positive-definitiveness across the trajectory, we started
by decomposing the covariance matrices of Netstart and Netend to their respective Cholesky
decompositions, Cstart and Cend, and generated 100 quadratic polynomials in the [0, 1] interval,
forcing their starting and ending values to be entries from Cstart and Cend. These polynomials
then gave a lower triangular matrix function Csim from which a covariance function could
be computed: Σsim(t) = Csim(t)TCsim(t), t ∈ [0, 1]. To obtain the mean function µ(t) of this
morphing distribution, we generated 10 random quadratic polynomials, one for each entry of
µ, and multiplied their values with a constant factor β.

Finally, we obtained 100 samples from this distribution by first sampling 100 timepoints
from the [0, 1] interval and then sampling from the Gaussian distributions given by the simu-
lated covariance and mean functions at each timepoint. We performed 6 of these simulations
with increasing noise-to-signal ratio α

β but maintaining the same noise structure (see Fig1B of
main text). See locally-linear embeddings of these simulations in Supplemental Fig1.

Simulated data and scripts can be found in the supplemental data package supplemen-
tary data.zip.
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Supplementary Results

In silico benchmarks with non-heteroscedastic covariance estimation

To assess whether heteroscedastic covariance estimation is necessary for robust psuedotime
estimation in our model, we performed SCIMITAR inference in our in silico benchmark by
fixing the covariance function to a constant matrix function in two settings. In the first setting,
we set all covariances to the identity matrix, essentially reducing our model to a principal
curve smoothed differently by each functional class (see Supplemental Fig2A). The results
were equal or inferior to the heteroscedastic SCIMITAR model (compare to Fig 2 in the main
text). In particular, the Gaussian Process functional class tended to under-smooth and produce
significantly inferior results, especially in the highly non-linear setting of our correlated noise
benchmark (Fig2A left). In the second setting, we set all covariances to the average covariance
matrix at all pseudo time-points at each iteration of coordinate ascent, summarizing local
inferences into one global value. This resulted in a homoscedastic model that was informed by
heteroscedastic inferences. These models were again equal or inferior to their heteroscedastic
counterparts and especially under-performed in high uncorrelated noise and low smoothing
(with Gaussian Processes) settings (see Supplemental Fig2B). Furthermore, homoscedastic
models by definition are not able to track changing co-expression associations between genes,
limiting their power for characterizing the functional changes between cell states across the
trajectory.

Neurodifferentiation-associated genes

Exhaustive list and plots for neurodifferentiation progression associated genes and co-
regulatory state modules are given in the supplementary data.zip package.

Supplemental Figures
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Figure 1. Locally linear embedding visualizations of the correlated noise simulations, as noise-to-signal α
β

(see Suppl. Methods) increases



Figure 2. In silico benchmark results with non-heteroscedastic covariance structure. A. Benchmark results
when covariances at each pseudo time-point are set to the identity matrix. B. Benchmark results when covari-
ances at each pseudo time-point are set to a global average of local covariances. Results are equal or inferior
to the full heteroscedastic models (see Figure 2 in main text).


