O 00 N O U1 b

10
11
12
13
14
15
16
17

18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

37

38

Biodiversity as a multidimensional construct: Alternative SEM Models and Placement of Number of Taxa

S. Naeem, Case Prager, Brian Weeks, Alex Varga, Dan F.B. Flynn, Kevin Griffin, Robert Muscarella,
Matthew Palmer, Stephen Wood, William Schuster.

In Structural Equation Modeling (SEM), each model represents a hypothetical set of causative and
correlative relations (linkages) among measured and unmeasured variables. In the absence of any
specific model of interest, there are several possible models, each reflecting possible alternative
patterns of linkages among variables. Thus, one can examine a specific model that reflects a specific
structure or one can explore all identified, admissible models to find the model that best fits or predicts
the data. “Identified” means that the number of known parameters exceeds the number of unknown
parameters, thus the model may be resolvable. In many cases, however, even if the number of knowns
exceeds unknowns, the data may yield an inadmissible model. A model is deemed inadmissible if the
analytical algorithm yielded negative residual variances, an R? > 1, or an otherwise inadmissible solution
[1]. In some cases, a model is excluded because it could not be resolved because the iteration limit set
by the algorithm was reached and increasing the limit did not change the outcome. Thus, many models
can be constructed for a single set of variables, though generally only a fraction of them make sense
(e.g., biologically), can be identified, provide admissible results for a specific set of data, and can be
resolved within the iteration limit of the algorithm.

This exploratory approach in which many models are explored for a single set of variables, or
exploratory SEM, can identify the best predictive model for a specific data set. The most predictive
model, however, may not reflect the full set of linkages that are relevant; it only reflects linkages
supported by the data. A different set of data may yield a different model as the best predictor. The
full model and its rationale are therefore critical parts of the exercise (for a discussion of these and
related issues concerning SEM, see [2-7]).

In this study, the SEM-framework (Fig. 2) and its rationale are explained in the main text. Our single, full
model (Fig. 3, Fig. S1 A) is derived directly from the SEM framework and is based, in part, on the
biological argument that the number of taxa (i.e., species richness) covaries with most, if not all
biodiversity metrics (Fig S1 A and Fig. 2). However, there may be reasons to treat the number of taxa
differently. The number of taxa may be treated as a variable that directly influences the ecosystem
property (Fig. S1A). Alternatively, the number of taxa may be treated as a variable that directly
influences biodiversity metrics (Fig S1 C). Finally, another alternative would be to treat the number of
taxa as a variable that directly influences the taxonomic diversity dimension (TD), but not functional or
phylogenetic diversity dimensions (FD or PD, respectively, Fig. S1 D). There are many more alternatives,
but we examine these four (Fig. S1 A-D) to serve two purposes. First, we examine these alternatives to
address possible differences in the way researchers may wish to treat number of taxa in
multidimensional biodiversity analyses. Second, we simply wish to illustrate the exploratory approach
as a supplementary exercise.

Methods
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We performed an exploratory SEM approach in which we examined the four alternative models shown
in Figure S1 and described above. We used the Specification Search function in the SEM statistical
software package, Amos [1], to search for alternative structures for each of the four models to
determine if there were alternatives that better fit our data (or were potentially more predictive) than
the full model. Alternative structures consisted of the full set of possible structures in which one or
more links were removed. Only models that are identified and admissible were considered. Unresolved
models that occurred because the iteration limit, initially set at 50 iterations, were rerun with the limit
set to 100. This procedure did not increase the number of models resolved, thus we considered these
models as effectively unresolvable for the data to hand.

Results

In Table S1, we provide the total number of possible alternative models for each of the four models
shown in Figure S1. There are thousands of possible alternative models for each model shown in Figure
S1 (Table S1), the vast majority of which are either unidentified, inadmissible, or failed to be resolved
before the algorithm’s iteration limit was reached. The model treating number of taxa as a covariate
(Fig. S1 A) was identified and admissible for plots with or without exposure to herbivory, but the
alternatives (Fig. S1 B-D) did not provide interpretable results (Table S1). By “interpretable,” we mean
being able to compare model outcomes between plots exposed to or protected from herbivory. Only
one full model was identified; the model presented in Figure S1 D in which number of taxa was linked to
the taxonomic diversity dimension (TD) for plots protected from herbivory. Because the full model for
plots exposed to herbivory was inadmissible, we cannot compare whether different dimensions had
different influences on the ecosystem property (total cover) between the two treatments. Selecting
admissible alternatives would allow for predicting total cover based on diversity metrics or dimensions,
but our question concerned how the full models compared, not how best to predict total cover. All
models, full and alternatives, rejected the hypothesis that they fit the data, thus, as discussed in the
text, that although model fit methods in SEM remain under discussion [8-10], specific predictions could
be suspect.

Discussion

Different researchers may have cause to deviate from our suggested generic model (Fig. 2), but for our
specific example, three alternative approaches (Fig. S1 B-D) in which the number of taxa (i.e., species
richness) was treated differently, did not provide interpretable results. The large number of
inadmissible and unresolved models most likely stems from insufficient data and it is possible the
alternative treatments of number of taxa we explored may work where more data are available.

It is important to note that we cannot, in our case study, shed light onto whether alternative models (Fig
S1 B-D) given the data we have. We have provided our rationale for the model presented in Fig. 2, but
further work, different systems, and different questions may lead to alternative models better suiting
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different investigations. We also do not advocate nor discourage exploratory analyses of multi-
dimensional models of biodiversity’s influence on ecosystem function as done here in this
supplementary material for our case study. We focused our analyses on testing the biologically
plausible model in which the number of taxa was considered a covariate of all biodiversity metrics (Fig.
2) and the data applied to the full models showed multidimensional biodiversity effects to differ
between herbivore-exposed and herbivore protected plots. However, when an alternative model is
more appropriate for the hypothesis under investigation, such as any of the three alternatives illustrated
in Figure S1 (B-D), such models should be examined. As in all SEM-based studies, the number of possible
models can be fairly large and many may not be identifiable (too many unknowns) or admissible
(unresolvable by analytical algorithms when sample sizes are small), as in our case.
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Tables

Table S1. Exploratory Structural Equation Model (SEM) for multiple dimensions of biodiversity
applied to understory forest vegetation at Black Rock Forest, New York, exposed to or protected
from deer herbivory. For each SEM model in which the treatment of number taxa is different (Fig.
S1 A-D), a specification search was conducted using Amos and basic outcomes of the search are
tabulated here. AICis the is the Aikake Information Criterion which measures the likelihood of the
model given the data and aids in model selection among a set of comparable models The AIC for
the best model is provided (maximum AIC is provided parenthetically); lower values reflect better
fits. Herbivory was either present (i.e. “Yes”) or not (i.e., exclosures were present, “No”). P reflects
probability that model fits the data if P (<0.05 means that model was rejected as a good fit to the
data). Results for the full model (i.e., all links illustrated in Fig. S1 A-D are present) are provided in
the right most column. If the full model was admissible, the R? for the model’s prediction of total
cover is provided parenthetically.

Best Fit Model Full model
Number | Number of | Her- Para- AIC of P Admissible (R?)
of Admissible | bivory | meters best fit or
models Models (poorest Inadmissible
fit) model
Covariate 32,768 14 | Yes 21 174.0 | <0.001 | Admissible (0.76)
with (187.1)
Dimensions 7 No 16 179.0 | <0.001 | Admissible(0.19)
(187.1)
Directly 8,192 8| Yes 17 167.6 | <0.001 | Inadmissible
influences (176.5)
Total Cover 7 No 20 170.2 | <0.001 | Inadmissible
(Fig. S1 B) (187.1)
Influences 262,144 163 Yes 18 117.9 | <0.001 | Inadmissible
Dimensions (176.5)
(Fig. S1 C) 112 No 21 127.4 | <0.001 | Inadmissible
(179.0)
Directly 8,192 6| Yes 14 169.4 | <0.001 | Inadmissible
influences (177.4)
D 3 No 16 179.0 | <0.001 | Admissible (0.65)
(Fig. S1 D) (187.1)

sS4




92

93

Table S2 Correlation matrix for biodiversity metrics used in structural equation modeling example (see Fig. 3).
Pearson correlations. Bolded numbers mean P < 0.05, Bonferroni corrected.

Shannon | Simpson FD FD FD Phylogenetic Phylogenetic
Divergence | Evenness Richness Faith MPD
Simpson 0.96
FD -0.01 -0.14
Divergence
FD 0.07 0.02 -0.10
Evenness
FD 0.48 0.33 0.58 -0.14
Richness
Phylogenetic 0.49 0.33 0.58 -0.14 0.97
Faith
Phylogenetic 0.93 0.88 0.07 0.01 0.60 0.62
MPD
Number of 0.52 0.37 0.53 -0.18 0.95 0.97 0.59
Taxa
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Figure Captions

Figure S1. Four possible SEM models for the relationship between multiple dimensions of biodiversity
and an ecosystem property; TD, FD, and PD related to total vegetation cover in understory vegetation
plots at Black Rock Forest. See caption to Figure 3 for further detail. A. Number of species is a covariate
of TD, FD, and PD. B. Number of taxa as a variable that directly influences the ecosystem property. C.
Number of taxa directly influences biodiversity metrics. D. Number of taxa directly influences the

taxonomic diversity dimension.
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Figure S1
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