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Supplemental Materials and Methods 

miRNA Sponge plasmid Construction: 
Briefly, we replaced eGFP with dsRed2 in pLVCT-tTR-KRAB (Szulc et al. 2006) via 
ligation to create pLVCT-RFP-KRAB. We then cloned d2eGFP::miR-10 sponge from (Ma 
et al. 2010) into pLenti CMV/tet puro dest (Campeau et al. 2009) via Gateway cloning. 
We first integrated pLVCT-RFP-KRAB into the genome of HEK293T cells using 
lentivirus, picked a single cell, and clonally expanded the population. We then infected 
this line with lentivirus containing the CMV/tet::d2eGFP::miR-10 sponge, and selected 
for positive transgenics with puromycin (Sigma). 

In situ hybridizations: 
To detect miRNA expression patterns during mouse embryogenesis, we used miRCURY 
LNA probes, which are specific for miRNA family members (Exiqon). E9.5 CD1 embryos 
were placed in MeOH and added into columns in an Intavis AG Insitu Pro. Pre-
hybridization was performed at 61C for 6hrs and hybridization was performed at 61C for 
10hrs. Following completion in the Insitu Pro, embryos were removed and washed with 
Ab buffer (1M pH9.5 Tris, 1M MgCl, 5M NaCl). Substrate was added and embryos were 
allowed to sit overnight at 4C. The color reaction proceeded at room temperature until 
desired colored was achieved. If color reaction required additional time, the substrate 
was removed and embryos were washed with Ab buffer. Ab buffer was then replaced 
with either a lower pH buffer (50mM pH7.5 Tris, 150mM NaCl, 0.1% Triton-X100) or 
KTBT buffer (50mM pH7.5 Tris, 150mM NaCl, 10mM KCl, 1% Tween-20) and placed at 
4C overnight. Buffer was then removed and replaced with fresh substrate and embryos 
were allowed to resume staining at room temperature. When desired staining was 
achieved, substrate was replaced with PBS and embryos were stored at 4C. 
Primers: 

Primers: 
ACTB cDNA F TCCGCAAAGACCTGTACGCC 
ACTB cDNA R AGGGGCCGGACTCGTCATAC 
ALDH1A3 qPCR F CTCGACAAAGCCCTGAAGTTGG 
ALDH1A3 qPCR R TCAGGGGTTCTTGTCGCCAAG 
CYP26A1 cDNA F AGACCCTTCGACTGAATCCC 
CYP26A1 cDNA R GCTGAACCTGGATGCATCC 
ICAM1 cDNA F GAGATCTTGAGGGCACCCTACCC 
ICAM1 cDNA R ATAGAGGTACGTGCTGAGGCC 
let-7a-2 F GCCAGTCCCAAGTATTTGCTCCC 
let-7a-2 R GGACACCTGATATACTGAATCCCTC 
let-7c F GACATTTTACGTGACCTATGCTG 
let-7c R CCCATTAGAAATACCATTTTGACA 
let-7f F CCTTTCTCCCTTCTTACTAATCAATTGG 
let-7f R GGACAGAGTTGCAGTCAGGAAATG 
miR-10a F GGCGTCCCTTTGCGAACTGG 
miR-10a R GGGGAGAGTTCAGGTAGATG 
miR-10a promoter F TGGGCGGTGAAGGGGAGAGGC 
miR-10a promoter R GCCCAGAAATTTTCCAGTTCTCC 
miR-10b F AAGAATATTCTGGTTGTTCGCC 
miR-10b R TCTTTCTTTCTTTTCAGCACCC 
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miR-10b promoter F CCTCTGCTTCTCTGTAACTGCAG 
miR-10b promoter R GGTCCCACCCAGAGTGAGGTAC 
miR-125a F TGGCTTCTGTGTCTCTTTCACAGTGG 
miR-125a R TTGGCCAGCAGGGCCATCGTG 
mir-125b-2 F GGTCTGGAATTAGTCTATAAATGGTCG 
mir-125b-2 R CGTTATAATACAAACGCTATTTCAGTGC 
miR-34a F GGAGTCTTGCTAGTTGCCTGGG 
miR-34a R GACGTGCAAACTTCTCCCAGCC 
NCOA6 cDNA F CCCGTCGCAGAATTTAGTCTC 
NCOA6 cDNA R AGTAGAGCTGGAGGCTGAAGC 
RARG cDNA F AAAAAGTGGACAAGCTGCAGG 
RARG cDNA R CCAGCATCTCTCGGATTAAGG 
RBP1 cDNA F GTCACTCCCCGAAATGCC 
RBP1 cDNA R CCTTCCCAACCTGGAAGTCC 
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Supplemental Fig S1. Duplication rates, conservation, and nucleotide content of conserved 
miRNA families (A) miRNAs were grouped based on the number of members in each family, and 
normalized to the total number of highly conserved miRNAs in each species.  Data shows that the 
percentage of miRNAs that belong to multicopy families is >80% in the majority of vertebrate 
species. (B) Strand bias for 62 miRNA families shows no preference for which arm is preferentially 
processed. (C) Nucleotide content of miRNA and miRNA* strands. (D) Nucleotide content of miRNA* 
strand by position.  Shows a marked depletion of U residues in the first position, and no other clear 
patterns. (E) Average entropy scores from entire miRNA or miRNA* sequences.  
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Supplemental Fig S2  

Supplemental Fig S2. History of sequence evolution in several deeply conserved metazoan miRNA 
families. We analyzed duplications and sequence changes of several of the most deeply conserved 
miRNA family members. These families were chosen based of their use our experiments, or because of 
unique features. For example, miR-1 is unique in that there has been a duplication without sequence 
divergence, and miR-31 typically has more copies in insects than in vertebrates. Regardless of the 
differences, the general trend is that sequence divergence most frequently occurs following duplication, 
and without duplication sequence changes are rare.  The one consistent exception to this is the freshwater 
teleosts (zebrafish, catfish, and salmon), whose genomes have undergone several whole genome 
duplications. (arm=arm switching, ins=insertion, del=deletion, tand. dup.=tandem duplication) 
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Supplemental Fig. S3: Base pairing is a conserved feature of miRNA duplexes. (A) Raw entropy scores 
were calculated  (see materials and methods) for the miRNA or miRNA* strands for 62 miRNA families, and 
averaged by position. The least conserved in both strands nucleotides are also those which show the lowest 
frequency of base pairing (compare to Fig 1E), or are overhangs left from dicer processing (the two 3’most 
nucleotides). (B) Schematic of features analysed within miRNA duplexes. 1: mismatched bases, 2: bulge in 
miRNA strand, 3: bulge in miRNA* strand. Species used in this analysis were C. elegans, D. melanogaster, S. 
purpuratus,  C. intestinalis, P. marinus, D. rerio, M. musculus, and H. sapiens.  Data represents 590 miRNAs from 
62 families. (C) Distribution of bulges along miRNA duplexes. Values represent mean frequency of bulge 
possession in 62 miRNA families. Asymetry in bulges suggests helical structure may play a role in strand 
discrimination.  
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Supplemental Fig S4. miRNA targeting 
site analysis and target preference for 
miRNA family members. (A) Occurrence 
of p6 wobble target sites in 3’LIFE screen 
for let-7c and miR-10b  (B) Targeting 
footprint of the top 50 target sites that lead 
to functional repression in the 3’LIFE 
screen. Heatmap of positive hits obtained 
for miR-34a (C) and miR-125b (D). 
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Supplemental Fig S5. miR-10 targets several genes in the RA pathway. (A)  
Inducible miR-10 sponge design. (B) Fluorescence microscopy showing induction of 
RFP and GFP three days post 5 uM doxycycline treatment (5uM) in HEK293T cells. 
GFP images taken at 1s exposure to detect any leaky sponge expression. (C) RT-
qPCR for mature miR-10a and miR-10b 72 hrs after dox treatment. Specificity of the 
qPCR primers for miR-10 family members is demonstrated in Fig. 7C. (D) mRNA 
levels of four genes in the RA pathway identified in 3’LIFE screen, as well as two RA 
responsive genes that were not targeted by miR-10. mRNA levels of target genes 
increase following doxycycline, while non-targets do not.  All data normalized to 
ACTB, n=3. (E) RARG 3’UTR, showing position of two putative target sites for 
miR-10b. (F) Deletion analysis of putative miRNA target sites in RARG 3’UTR. 
HEK293T cells were cotransfected with miRNA and luciferase::3’UTR, and 
normalized to luciferase ratio of a no miRNA control (dashed line) (n=4). 
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Supplemental Fig S6. miR-99a 
targets lack canonical miRNA target 
sites. (A) Bioinformatic predictions for 
miR-99, miR-10, and let-7 family 
members with Diana microT-CDS, 
which makes independent predictions 
for each miRNA family member. (B) 
Mutagenesis experiments for HOXD10, 
a top target for both miR-10a/b and 
miR-99a. Deletion of the miR-10 target 
site does not rescue repression by 
miR-99a. (C) Predictions for miR-99a by 
three target prediction softwares. 
Conservation of targets predicted by 
TargetScan is noted. TargetScan 
predictions for miR-99a have 11% 
overlap with 3’LIFE hits compared to 
35% for miR-10b and let-7c (Fig 2B). 
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Supplemental Fig S7. miRNA targeting site analysis and target preference for miRNA family members. 
(A) Distance analysis of targeted and non-targeting, canonical miRNA targets from screens of let-7c, 
miR-10b, miR-34a, and miR-125a (related to Fig. 3B). Analysis suggests that when a canonical target site is 
located in the last 200 nucleotides of an mRNA, it will lead to functional repression the majority of the time.  
However, beyond this distance, additional factors may influence the ability of a miRNA to repress the 
translation of a target mRNA. (B) Targeting footprint of the top 50 target sites that lead to functional 
repression in the 3’LIFE screen (related to Fig. 2B). Each miRNA prefers distinct features of target sites such 
as central pairing (miR-10b, miR-34a) 
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Supplemental Fig S8. let-7 family members have differential expression patterns in tissues: To 
investigate the degree of overlap of specific miRNAs in normal human tissues, we downloaded expression 
levels for let-7 family from miRGator v3.0 (Cho et al., 2013, Nucl. Acids Res.), which is a compilation of high-
throughput sequencing data from GEO, SRA, and TCGA. 
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Supplemental Fig S9: miR-10 family members have differential expression patterns in normal tissues: 
To investigate the degree of overlap of specific miRNAs in normal human tissues, we downloaded expression 
levels for miR-10 (A), and miR-99 (B) families from miRGator v3.0 (Cho et al., 2013, Nucl. Acids Res.), which 
is a compilation of high-throughput sequencing data from GEO, SRA, and TCGA. We normalized the 
expression levels and overlapped both miRNA family members.  
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