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I. REACTION-DIFFUSION IN A HALF-SPACE

The diffusion equation with a simple linear reaction term writes:
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In a planar geometry, ¢, depends on a single space variable z and we take the boundary condition O(x = 0,t) =
S dn(0)et =57 c,e™@!. In this case, equation (S1) takes on the simpler form
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We find solutions of equation (S2) using the complex Fourier expansion of the concentration in the time domain

O(z,t) = Z b (z)e™ (S3)
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where the usual relation ¢, (z) = ¢*, (x) between pairs of Fourier coeflicients holds, since the concentration is a real
function. By substitution we find that the space-dependent Fourier coefficients satisfy the equation
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in the half-space z > 0, with w,, = nw. Therefore, when we let ¢, (7) = c,e?*"* — so that ®(z,t) = c,e™nt+ikn® — e
find
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Finally, using the boundary conditions we obtain the solution
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and from the trigonometric identity
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O(x,t) = cpexp {z

we find the decay length /¢,
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II. CYLINDRICAL SYMMETRY

Assuming cylindrical symmetry, the reaction-diffusion equation in cylindrical coordinates is
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We separate again the spatial and the time variables, taking candidate solutions
O(r,t) =0(r,t) = Y ¢n(r)e™, (S11)

that lead to the equations for the Fourier coefficients
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The boundary conditions are defined by the inner surface of the blood vessel (r = R, where R is the radius of the
blood vessel), where we set ®(r = R,t) = > >~ ¢,(0)e"™" =3 _ ¢,e" and by lim, ,o ®(r,0,2,t) < cc.
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Equations (S12) are modified Bessel equations, and the solutions that satisfy the boundary conditions are the modified
Bessel functions of the second kind Kj (\/(Ay + iwy)/D r). The complex argument of the Bessel function can be

written as follows
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and since both w, and 7 are nonnegative, so that 0 < arctan(w,/y) < 7/2 and |arg(s)| < w/4, we can use the
following asymptotic expansion for Ko(z) (see, e.g., eq. (9.7.2) in [1] )

Ko(s) ~ ge_s, (S14)

and we find that the asymptotic behavior of the solution is
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The oscillatory and the exponential parts are just like those of equation (S7), however the asymptotic expansion
(S15) includes a factor 7—/2 and it has a faster-than-exponential decay. Again, as in the case of equation (S7),
the longest characteristic length corresponds to the stationary case (wg = 0), and taking the boundary condition
®(r =R,0,z,t) = ®y the solution is
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D(r,0,2,t) = p(r) = QOM (S16)
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III. REACTION-DIFFUSION AROUND TUMOUR BLOOD VESSELS: THE CASE OF TUMOUR
CORDS

Here we develop a method to solve the reaction-diffusion equation in a complex setting where the oxygen absorption
rate is position-dependent, and we start with the simpler case of reaction-diffusion in a half space and without explicit
time dependence.



A. Stationary case
1. Reaction-diffusion in a half-space

In the time-independent case the reaction-diffusion equation in a half-space with variable consumption rate takes
on the form
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with > 0, with the boundary condition ®(0) = &y, and with

Y(x) = 70 + Ve exp(—z/Ac). (S18)

In general equation (S17) does not have a closed-form solution, however we can still find a solution as follows. We
divide the x range in thin layers with thickness Az so that we can use the fixed-vy, time-independent solution of
equation (S2) in each layer, and we obtain

O(x + Ax) = exp [— MA&C O(x), (S19)
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and therefore by iteration we get
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Then, taking the limit Ax — 0, nAz — z, we find
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d(x) = exp (— /0z \/ V(Dz)dz) . (S22)

As a curiosity we note that with the assumed behavior vy(z) = v + v exp(—z/A.) — an exponentially decreasing
with largest value 7o + 7. on the interface plane at = 0 — it is possibile to integrate the exponent in (S22), since a
primitive function exist
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or also

/W dz = % [W — V/aarctanh (vot—l—\/cé)e””)] , (S23)

so that finally we find the exact solution
O(z) = exp [ S(2)] Po, (S24)

with
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2. Cylindrical symmetry

We find that the previous derivation can be adapted to the time-independent reaction-diffusion equation in cylin-
drical coordinates
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with
¥(r) = v0 + Y exp[—(r — R)/A¢]. (S27)

We proceed as above, bearing in mind that in each thin cylindrical shell the local solution is proportional to
Ko(\/~(r)/D r), with v(r) nearly constant, and we find
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Tterating this local step we find
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and finally
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Eq. (S30) can also be written in the form
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after expansion of the numerator for small Ar. It is also possible to proceed in an equivalent way taking the logarithm
of equation (S30) first, so that
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Notice that if y(r) = v, we find
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i.e., we recover
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which is the original solution with constant ~.
Using the integral representation (see, e.g., eq. (9.6.24) in [1])
K,(2)= / e %0t cosh(vt)dt, (S38)
0

it is easy to see that K{(z) = —K1(z) (eq. (9.6.27) in [1]), and therefore we can also rewrite the integral (S35) as

follows
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B. Time-dependent case with periodic oxygen fluctuations

When we consider the time-dependent case eq. (S26) is replaced by the equation
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with the boundary conditions ®(r = R,t) = > °° ¢, (0)e™ = > ¢, and lim, o ®(r,0,2,t) < 0o

This is formally the same as equation (S26), with a complex consumption rate v(r) — v(r) + iw,, and the formal
solution parallels that found in section III A 2 above:

zwn iwn +y(r")/D 1! ,
m;:;‘* Viw, +10/Dr'|
=Iln¢,(R / Nmemrt } dr’. (5S41)

The calculation of this expression requires an evaluation of the Bessel functions of the second kind with complex
argument prior to the integration step [2].
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