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I. REACTION-DIFFUSION IN A HALF-SPACE

The diffusion equation with a simple linear reaction term writes:

∂Φ

∂t
= D∇2Φ− γΦ. (S1)

In a planar geometry, φn depends on a single space variable x and we take the boundary condition Φ(x = 0, t) =∑∞
n=−∞ φn(0)einωt =

∑∞
n=−∞ cne

inωt. In this case, equation (S1) takes on the simpler form

∂Φ

∂t
= D

∂2Φ

∂x2
− γΦ. (S2)

We find solutions of equation (S2) using the complex Fourier expansion of the concentration in the time domain

Φ(x, t) =

∞∑
n=−∞

φn(x)einωt, (S3)

where the usual relation φn(x) = φ∗−n(x) between pairs of Fourier coefficients holds, since the concentration is a real
function. By substitution we find that the space-dependent Fourier coefficients satisfy the equation

d2φn
dx2

=
γ + iωn
D

φn(x) (S4)

in the half-space x > 0, with ωn = nω. Therefore, when we let φn(x) = cne
iknx – so that Φ(x, t) = cne

iωnt+iknx – we
find

k2 = −γ + iωn
D

=
1

D

√
ω2
n + γ2 ei arctanωn/γ+iπ, (S5)

and

k = ±
(
ω2
n + γ2

D2

)1/4 [
sin

(
1

2
arctan

ωn
γ

)
+ i cos

(
1

2
arctan

ωn
γ

)]
. (S6)

Finally, using the boundary conditions we obtain the solution

Φ(x, t) = cn exp

{
i

[
ωnt+

(
ω2
n + γ2

D2

)1/4

sin

(
1

2
arctan

ωn
γ

)
x

]
−
(
ω2
n + γ2

D2

)1/4

cos

(
1

2
arctan

ωn
γ

)
x

}
, (S7)

and from the trigonometric identity

cos
arctan y

2
=

√
cos(arctan y) + 1

2
=

√
1 +

√
1 + y2

2
√

1 + y2
, (S8)

we find the decay length `n

`n =

√
2D

γ +
√

(ω2
n + γ2)

= `0

√
2

1 +
√

(1 + ω2
n/γ

2)
. (S9)
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II. CYLINDRICAL SYMMETRY

Assuming cylindrical symmetry, the reaction-diffusion equation in cylindrical coordinates is

∂Φ

∂t
= D

1

r

∂

∂r

(
r
∂Φ

∂r

)
− γΦ. (S10)

We separate again the spatial and the time variables, taking candidate solutions

Φ(r, t) = Φ(r, t) =

∞∑
n=−∞

φn(r)einωt, (S11)

that lead to the equations for the Fourier coefficients

r
∂

∂r

(
r
∂φn
∂r

)
−
(
γ + iωn
D

)
r2φn = 0. (S12)

The boundary conditions are defined by the inner surface of the blood vessel (r = R, where R is the radius of the
blood vessel), where we set Φ(r = R, t) =

∑∞
n=−∞ φn(0)einωt =

∑∞
n=−∞ cne

inωt, and by limr→∞Φ(r, θ, z, t) < ∞.
Equations (S12) are modified Bessel equations, and the solutions that satisfy the boundary conditions are the modified

Bessel functions of the second kind K0

(√
(γ + iωn)/D r

)
. The complex argument of the Bessel function can be

written as follows

s = r

√
iωn + γ

D
= r

(ω2
n + γ2)1/4√

D
exp

[
i

2
arctan

(
ωn
γ

)]
, (S13)

and since both ωn and γ are nonnegative, so that 0 ≤ arctan(ωn/γ) ≤ π/2 and | arg(s)| ≤ π/4, we can use the
following asymptotic expansion for K0(z) (see, e.g., eq. (9.7.2) in [1] )

K0(s) ∼
√

π

2z
e−s, (S14)

and we find that the asymptotic behavior of the solution is

|Φ(r, θ, z, t)| ∼

√
π
√
D

2r(ω2
n + γ2)1/4

cos

[
ωnt+

(
ω2
n + γ2

D2

)1/4

sin

(
1

2
arctan

ω0

γ

)
r

]

× exp

[
−
(
ω2
n + γ2

D2

)1/4

cos

(
1

2
arctan

ωn
γ

)
r

]
. (S15)

The oscillatory and the exponential parts are just like those of equation (S7), however the asymptotic expansion
(S15) includes a factor r−1/2 and it has a faster-than-exponential decay. Again, as in the case of equation (S7),
the longest characteristic length corresponds to the stationary case (ω0 = 0), and taking the boundary condition
Φ(r = R, θ, z, t) = Φ0 the solution is

Φ(r, θ, z, t) = ϕ(r) = Φ0

K0

(√
γ
D r
)

K0

(√
γ
D R

) . (S16)

III. REACTION-DIFFUSION AROUND TUMOUR BLOOD VESSELS: THE CASE OF TUMOUR
CORDS

Here we develop a method to solve the reaction-diffusion equation in a complex setting where the oxygen absorption
rate is position-dependent, and we start with the simpler case of reaction-diffusion in a half space and without explicit
time dependence.
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A. Stationary case

1. Reaction-diffusion in a half-space

In the time-independent case the reaction-diffusion equation in a half-space with variable consumption rate takes
on the form

D
∂2Φ

∂x2
− γ(x)Φ(x) = 0, (S17)

with x ≥ 0, with the boundary condition Φ(0) = Φ0, and with

γ(x) ≈ γ0 + γc exp(−x/λc). (S18)

In general equation (S17) does not have a closed-form solution, however we can still find a solution as follows. We
divide the x range in thin layers with thickness ∆x so that we can use the fixed-γ, time-independent solution of
equation (S2) in each layer, and we obtain

Φ(x+ ∆x) ≈ exp

[
−
√
γ(x)

D
∆x

]
Φ(x), (S19)

and therefore by iteration we get

Φ(x+ n∆x) ≈

≈ exp

[
−
√
γ(x+ (n− 1)∆x)

D
∆x

]
. . . exp

[
−
√
γ(x+ ∆x)

D
∆x

]
exp

[
−
√
γ(x)

D
∆x

]

≈ exp

[
−
n−1∑
k=0

√
γ(x+ k∆x)

D
∆x

]
Φ(x). (S20)

Then, taking the limit ∆x→ 0, n∆x→ z, we find

Φ(x+ y) = exp

(
−
∫ y

0

√
γ(x+ z)

D
dz

)
Φ(x), (S21)

or also

Φ(x) = exp

(
−
∫ x

0

√
γ(z)

D
dz

)
Φ0. (S22)

As a curiosity we note that with the assumed behavior γ(x) = γ0 + γc exp(−x/λc) – an exponentially decreasing γ
with largest value γ0 + γc on the interface plane at x = 0 – it is possibile to integrate the exponent in (S22), since a
primitive function exist ∫ √

a+ becx dx =
2

c

[√
a+ becx −

√
a arctanh

(√
a+ becx√

a

)]
, (S23)

so that finally we find the exact solution

Φ(x) = exp [−S(x)] Φ0, (S24)

with

S(x) =

∫ x

0

√
1

D
[γ + γc exp(−z/λc)] dz

= −2λc

(√
γ + γc exp(−x/λc)

D
−
√
γ

D
arctanh

√
1 +

γc
γ

exp(−x/λc)

)

+ 2λc

(√
γ + γc
D

−
√
γ

D
arctanh

√
1 +

γc
γ

)
. (S25)
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2. Cylindrical symmetry

We find that the previous derivation can be adapted to the time-independent reaction-diffusion equation in cylin-
drical coordinates

1

r

∂

∂r

(
r
∂Φ

∂r

)
− γ(r)Φ(r) = 0, (S26)

with

γ(r) ≈ γ0 + γc exp[−(r −R)/λc]. (S27)

We proceed as above, bearing in mind that in each thin cylindrical shell the local solution is proportional to
K0(

√
γ(r)/D r), with γ(r) nearly constant, and we find

Φ(r + ∆r) ≈ Φ(r)
K0[
√
γ(r)/D (r + ∆r)]

K0[
√
γ(r)/D r]

. (S28)

Iterating this local step we find

Φ(r + 2∆r) ≈ Φ(r)
K0[
√
γ(r + ∆r)/D (r + 2∆r)]

K0[
√
γ(r + ∆r)/D (r + ∆r)]

K0[
√
γ(r)/D (r + ∆r)]

K0[
√
γ(r)/D r]

, (S29)

and finally

Φ(r + n∆r) ≈ Φ(r)

∏n−1
k=0 K0[

√
γ(r + k∆r)/D (r + (k + 1)∆r)]∏n−1

k=0 K0[
√
γ(r + k∆r)/D (r + k∆r)]

. (S30)

Eq. (S30) can also be written in the form

Φ(r + n∆r) ≈ Φ(r)

n−1∏
k=0

{
1 +

√
γ(r + k∆r)

D

K ′0[
√
γ(r + k∆r)/D (r + k∆r)]

K0[
√
γ(r + k∆r)/D (r + k∆r)]

∆r

}
, (S31)

after expansion of the numerator for small ∆r. It is also possible to proceed in an equivalent way taking the logarithm
of equation (S30) first, so that

ln Φ(r + n∆r) ≈ ln Φ(r) +

n−1∑
k=0

lnK0[
√
γ(r + k∆r)/D (r + (k + 1)∆r)]

−
n−1∑
k=0

lnK0[
√
γ(r + k∆r)/D (r + k∆r)] (S32)

≈ ln Φ(r) +

n−1∑
k=0

√
γ(r + k∆r)

D

K ′0

[√
γ(r + k∆r)/D (r + k∆r)

]
K0

[√
γ(r + k∆r)/D (r + k∆r)

]∆r, (S33)

and therefore

ln Φ(r + r′) = ln Φ(r) +

∫ r′

0

√
γ(r + r′′)

D

K ′0

[√
γ(r + r′′)/D (r + r′′)

]
K0

[√
γ(r + r′′)/D (r + r′′)

]dr′′, (S34)

or equivalently

ln Φ(r) = ln Φ(R) +

∫ r

R

√
γ(r′)

D

K ′0

[√
γ(r′)/D r′

]
K0

[√
γ(r′)/D r′

]dr′ = ln Φ(R) +

∫ r

R

d lnK0

[√
γ(r′)/D r′

]
. (S35)
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Notice that if γ(r) = γ, we find

ln Φ(r) = ln Φ(R) +

∫ r

R

d lnK0

[√
γ/D r′

]
= lnϕ(R) + ln

K0

[√
γ/D r

]
K0

[√
γ/D R

] , (S36)

i.e., we recover

Φ(r) = Φ(R)
K0

[√
γ/D r

]
K0

[√
γ/D R

] , (S37)

which is the original solution with constant γ.

Using the integral representation (see, e.g., eq. (9.6.24) in [1])

Kν(z) =

∫ ∞
0

e−z cosh t cosh(νt)dt, (S38)

it is easy to see that K ′0(z) = −K1(z) (eq. (9.6.27) in [1]), and therefore we can also rewrite the integral (S35) as
follows

ln Φ(r) = ln Φ(R)−
∫ r

R

√
γ(r′)

D

K1

[√
γ(r′)/D r′

]
K0

[√
γ(r′)/D r′

]dr′. (S39)

B. Time-dependent case with periodic oxygen fluctuations

When we consider the time-dependent case eq. (S26) is replaced by the equation

1

r

∂

∂r

(
r
∂φn
∂r

)
−
(
γ(r) + iωn

D

)
φn = 0, (S40)

with the boundary conditions Φ(r = R, t) =
∑∞
n=−∞ φn(0)einωt =

∑∞
n=−∞ cne

inωt, and limr→∞ Φ(r, θ, z, t) < ∞.
This is formally the same as equation (S26), with a complex consumption rate γ(r) → γ(r) + iωn, and the formal
solution parallels that found in section III A 2 above:

lnφn(r) = lnφn(R) +

∫ r

R

√
iωn + γ(r′)

D

K ′0

[√
iωn + γ(r′)/D r′

]
K0

[√
iωn + γ(r′)/D r′

]dr′

= lnφn(R)−
∫ r

R

√
iωn + γ(r′)

D

K1

[√
iωn + γ(r′)/D r′

]
K0

[√
iωn + γ(r′)/D r′

]dr′. (S41)

The calculation of this expression requires an evaluation of the Bessel functions of the second kind with complex
argument prior to the integration step [2].
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