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Neuronal and synaptic models

We consider two well-known conductance-based neuronal models: Wang-Buzsáki (WB) [79] and Hodgkin-Huxley
(HH) [80] neurons that mimic the behavior of type-I and type-II oscillators, respectively. The time evolution of
the voltage of both WB and HH models governs the following equation:

C
dVi
dt

= Iapp − Iij(t) − ḡNam
3h(Vi − VNa) − ḡKn

4(Vi − VK) − ḡL(Vi − VL) (S1)

where j and i denote the indices of pre- and postsynaptic neurons, respectively. C is the membrane capacitance
in µF/cm2, Vi is the membrane voltage in mV. ḡNa, ḡK, and ḡL are maximal conductances of sodium, potassium
and leak currents in mS/cm2. VNa, VK and VL are corresponding Nernst equilibrium potentials in mV. The
numerical values of these parameters that we used in our simulations are listed in Table S1. The parameters n,
m and h are gating variables in which satisfy equations (S2) and (S3) in case of WB and HH conductance-based
models, respectively [79,80]:

dn(t)/dt = φ (αn(V )(1 − n(t)) − βn(V )n(t))
dh(t)/dt = φ (αh(V )(1 − h(t)) − βh(V )h(t))
m(t) = m∞(V ) = αm(V )/(αm(V ) + βm(V ))

(S2)

dn(t)/dt = αn(V )(1 − n(t)) − βn(V )n(t)
dh(t)/dt = αh(V )(1 − h(t)) − βh(V )h(t)
dm(t)/dt = αm(V )(1 −m(t)) − βm(V )m(t)

(S3)

where the functions α(V ) and β(V ) describe the transition rates between open and closed states of the channels
in which satisfy the equations (S4) and (S5) in case of WB and HH models, respectively [79,80]:

αn(V ) = −0.01(V + 34)/(exp(−0.1(V + 34)) − 1)
βn(V ) = 0.125 exp(−(V + 44)/80)
αh(V ) = 0.07 exp(−(V + 58)/20)
βh(V ) = 1/(exp(−0.1(V + 28)) + 1)
αm(V ) = −0.1(V + 35)/(exp(−0.1(V + 35)) − 1)
βm(V ) = 4 exp(−(V + 60)/18)

(S4)

αn(V ) = (0.1 − 0.01V )/(exp(1 − 0.1V ) − 1)
βn(V ) = 0.125 exp(−V/80)
αh(V ) = 0.07 exp(−V/20)
βh(V ) = 1/(exp(3 − 0.1V ) + 1)
αm(V ) = (2.5 − 0.1V )/(exp(2.5 − 0.1V ) − 1)
βm(V ) = 4 exp(−V/18)

(S5)

Iapp in equation (S1) is the injected current to the neuron i in µA/cm2. We assume that neurons are connected
to each other by excitatory chemical synapses. Iij(t) is the synaptic current from presynaptic to postsynaptic
neuron, given by:
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Table S1. Neuronal parameters of conductance-based WB and HH models.

Parameter Symbol WB HH Unit
Membrane capacitance C 1 1 µF/cm2

Spiking threshold Vth -40 -40 mV
Resting membrane potential Vr -65 -65 mV
Sodium equilibrium potential VNa 55 50 mV
Potassium equilibrium potential VK -90 -77 mV
Leak equilibrium potential VL -65 -54.4 mV
Sodium maximal conductance ḡNa 35 120 mS/cm2

Potassium maximal conductance ḡK 9 36 mS/cm2

Leak maximal conductance ḡL 0.1 0.3 mS/cm2

Applied current Iapp 1 10 µA/cm2

Iij(t) = ḡijsij(t− τij)(Vi − Esyn) (S6)

where ḡij is the maximal synaptic strength, τij = τd + τa is the total propagation delay between pre- and
postsynaptic neurons, Vi is the voltage of the postsynaptic neuron i, and Esyn is the synaptic reversal potential
that characterizes excitatory or inhibitory nature of the synapse. The function s(t) denotes the fraction of open
channels and obeys a first-order kinetics [79]:

dsij
dt

= αf(Vj − Vth)(1 − sij) − βsij (S7)

where α and β are channel opening and closing rates in ms−1, respectively. The function f(Vj) = 0.5[1 +
tanh(ηVj)] guarantees activation of the synapse whenever the presynaptic voltage crosses Vth and the parameter
η is a constant.

Simulation results for conductance-based models

In order to evaluate our developed framework in more realistic models, we considered two WB and HH
conductance-based neurons that are reciprocally connected to each other by symmetric excitatory chemical
synapses. WB and HH neurons mimic the behavior of type-I and type-II oscillators, respectively. In particu-
lar, the PRC of WB and HH neurons is qualitatively analogous to the response function of type-I and type-II
oscillators. This suggests that the distribution of time lags and in a result the synaptic strengths dynamics of
two WB and HH coupled neurons are generally similar to that of type-I and type-II oscillators, respectively.
Therefore, one can expect that the results presented in Fig. 4 for type-I and type-II oscillators are qualitatively
valid in case of WB and HH neurons.
Figs. S1 and S2 show the simulation results for WB and HH conductance-based models, respectively. The
simulation results for final synaptic strengths presented in Figs. S1D and S2D are generally consistent with
results illustrated in Fig. 4A1 and B1 for type-I and type-II oscillators, respectively. Figs. S1A-C and S2A-C
show the time course of simulated synaptic strengths (green and red) and time lag (blue) for different values of
axonal propagation delay when the dendritic propagation delay is constant. All three possible final configurations
of synaptic strengths can be achieved depending on the delay times and response function of the neurons. This
strongly illustrates that our results are qualitatively valid in more realistic models.
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Figure S1. Simulation results for WB neurons. (A-C). Time course of simulated synaptic strengths
(green and red) and time lag (blue). (D). Simulation results for final synaptic strengths vs. axonal propagation
delay. The inset shows the time lag in the absence of STDP. The dendritic propagation delay is fixed at
τd = 0.5 ms. STDP parameters are A+ = A− = 0.005 mS/cm2, and τ+ = τ− = 20 ms. Total time of simulation
at a given delay is 10 s. The initial values of synaptic strengths are g21(0) = g12(0) = 0.1 mS/cm2.
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Figure S2. Simulation results for HH neurons. (A-C). Time course of simulated synaptic strengths (green
and red) and time lag (blue). (D). Simulation results for final synaptic strengths vs. axonal propagation delay.
The inset shows the time lag in the absence of STDP. The dendritic propagation delay is fixed at τd = 0.5 ms.
STDP parameters are A+ = A− = 0.005 mS/cm2, and τ+ = τ− = 20 ms. Total time of simulation at a given
delay is 10 s. The initial values of synaptic strengths are g21(0) = g12(0) = 0.1 mS/cm2.
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