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SUPPLEMENTARY INFORMATION GUIDE 

The list of supplementary information files is provided below with a description of their content: 

 Supplementary Methods S1 (included in this pdf file). Contains two sections describing i) previous 

equations for the settling velocity of individual volcanic particles, and ii) the modelling approach and the 

set of underlying equations adopted for the numerical simulations.   

 Supplementary Video S2, mov. Examples of videos recorded at 2000 frames per second during experimental 

runs with Etna basaltic ash particles (ETB). The three panels show examples of experimental runs conducted 

at mass discharge rates of 2.0 x 10-4 kg/s (f5, left panel), 3.1 x 10-2 kg/s (f3, centre panel), 1.1 x 10-1 kg/s (f1, 

right panel). The natural duration of the video is 0.154 s. The average particle volume fraction (p) retrieved 

in these extracts is∼10-7, ∼5*10-5, ∼2*10-3.  

 Supplementary Video S3, mov. Illustration of the video processing steps. The left panel shows an extract 

(0.08 sec) of the original video of Etna basaltic ash particles (ETB). The center panel show the resulting pre-

processed output of the video obtained by subtracting the dynamic background from the original images. The 

right panel shows the tracked particles retrieved using the automatic tracking routine (PyTV). Only in-focus 

particles within the control volume are tracked by the routine. 

 Supplementary Video S4, mov. This video contains the result of the two-way coupling (particle-fluid 

interactions) Eulerian-Lagrangian simulations of ETB particles settling. The simulation reproduces the 

experimental run with discharge rate 1.1 x 10-1 kg/s and duration 10s. The left panel illustrate a 3D view of 

the particles (scale representing particle diameter d, in meters). The central and right panels illustrate the 

particle volume fraction (p, dimensionless), and the gas velocity (in m/s) along an axial 2D vertical slice. 

 Supplementary Video S5, mov. This video contains the result of the four-way coupling (particle-fluid and 

particle-particle interactions) Eulerian-Lagrangian simulations of ETB particles settling. The simulation 

reproduces the experimental run with discharge rate 1.1 x 10-1 kg/s and duration 10s. The left panel illustrate 

a 3D view of the particles (scale representing particle diameter d, in meters). The central and right panels 

illustrate the particle volume fraction (p, dimensionless), and the gas velocity (in m/s) along an axial 2D 

vertical slice. 
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SUPPLEMENTARY METHODS S1 

I. PREVIOUS EQUATIONS FOR THE SETTLING VELOCITY OF INDIVIDUAL VOLCANIC PARTICLES 

The terminal settling velocity (vt) of a particle is defined theoretically as the velocity attained when 

aerodynamic drag balances the accelerating force (gravity). Its study is relevant for a variety of natural particle-

laden flow systems in which the discrete phase have a density larger than that of the carrier fluid, like, e.g., 

ash/rain/hail settling in the atmosphere1–3, or sediment transport in rivers4. Its simplified expression derives 

from the Navier-Stokes equation of motion in which the inertial force term is neglected, and is widely used in 

numerical models of ash transport and sedimentation5. For an individual particle settling in a still medium, vt 

can be expressed as 
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where g is gravitational acceleration, ρp is the particle density, dp the particle diameter, ρc is the air density, and 

CD is the drag coefficient. This latter parameter is a complex function of particle properties (including, e.g., 

size, shape), and of the properties and structure of the carrier fluid and is usually derived empirically.  

Regarding volcanic ash, the treatment of Kunii and Levenspiel6 is widely used to derive a set of different 

empirical correlations of vt according to the flow regimes (expressed through the Reynolds number 

cptc dv Re , where μc is the dynamic viscosity of air) pertinent to the gravitational settling of volcanic 

ash particles 7,8. In this treatment, the effect of shape is discarded and the particles are assumed spherical. In 

the transitional regime (0.4<Re<500) it is expressed as: 
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Another widely used model derives vt from Wilson and Huang9, where the drag coefficient of differently 

shaped particles is experimentally defined as a function of Re and the shape parameter acbF 2/)(   

calculated using the particle axial lengths a > b > c: 
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obtaining vt from the combination of (1) and (3). 

Another experimentally defined expression is based on a more sophisticated particle shape parameter Ψ 10 
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The quantity Ψ represents the ratio of sphericity Φ to circularity χ, either used individually, or combined as 

shape descriptors11–14. Sphericity Φ is defined by the ratio of the surface area of the equivalent sphere 

(calculated from the equivalent diameter de) and the surface area of the actual particle. Circularity χ is the ratio 

of the particle perimeter and the equivalent circumference of a prolate ellipsoid. Here, equations 1-4 were used 

to calculate values of W Hv , 
KLv , and 

Dv respectively, using the measured shape and density data (see section 

2) of the particles used in our experiments.  



II. EULERIAN-LAGRANGIAN SIMULATIONS OF PARTICLES SETTLING IN A TWO-PHASE FLOW. 

MODEL DESCRIPTION 

When dealing with the movement of a group of particles inside a fluid, there are basically two different ways 

to approach the problem.  

i. In the Eulerian-Eulerian approach, the particles are treated as a continuous phase and conservation 

equations are solved for the particulate phase. This method is suitable for large particle concentrations, 

where two-way coupling between the fluid and the particulate phases as well as particle-particle collisions 

are important.  

ii. In the Eulerian-Lagrangian approach, the Eulerian continuum equations are solved for the fluid phase, while 

Newton's equations for motion are solved for the particulate phase in order to determine the trajectories of 

the particles (or group of particles). 

 

 

Figure 1. Eulerian-Lagrangian approach adopted for the numerical simulations. The particle P is represented by its position xp and 

velocity Up, updated solving the Newton's equations for motion. The velocity of the fluid phase is described by the field Uc, obtained 

solving the phase momentum equation on an Eulerian mesh. 

 

The OpenFoam solver adopted, namely MPPICFoam, is based on an Eulerian-Lagrangian approach, and 

allows selecting the degree of coupling between the carrier fluid and the particulate phase (one-way, two-way 



or four-way). In the Lagrangian formulation, the trajectories are obtained first integrating, for each particle P 

with mass mp and velocity Up (see Fig. 1), the following equation: 
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where the right-hand side expresses the sum of the forces acting on the particles. This equation expresses the 

Lagrangian acceleration of a particle as the sum of the forces Fp exerted on it along its trajectory (i.e. steady 

state drag, virtual mass force, Basset force, pressure gradient force and body force). 

Finally, once the velocities are updated, the trajectories are calculated by means of integration of the particle 

velocity: 
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The two equations above describe the acceleration and the trajectories of the Lagrangian particles subject to 

the forces exerted by the flow. Looking in more details at the first equation, to solve it we need to define the 

forces acting on the particles, generally defined as functions of the carrier fluid variables at the particle’s 

location. For this application, we neglect particle Magnus force (assuming that particle rotation is small 

compared to particle translation) and other forces such as added mass and Basset history terms15, obtaining the 

following expression for the total force: 
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In dilute flows, such as those of interest in this work, the dominant force acting on the particles are gravity and 

the drag force exerted by the fluid phase. The drag force is a function of the relative velocity of the particle, 

the density of the carrier phase, the particle reference area and its drag coefficient. The latter is given as a 

function of particle Reynolds number Re that is defined as the ratio of inertial force to friction force: 
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where c is the density of the carrier phase, Uc is its velocity and c and c are the dynamic and kinematic 

viscosities, respectively, and dp is the diameter of the particle. One common empirical correlation used for 

spheres is that of Schiller and Neumann (1933) and it fits well the experimental data up to a particle Reynolds 

number Re=1000: 
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Once the drag coefficient is known, the drag force on the particle can be evaluated as  
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Figure 2. Drag coefficient CD of a spherical particles as a function of Reynolds number Re, as obtained from laboratory experiments. 

The solid line is for a particle with smooth surface, while the dashed line is for a rough surface. 

 

So far, we have only considered the forces of the fluid phase acting on the particles. When the effects of the 

presence of the particles on the fluid phase are not negligible, we have to consider and model the two-way 
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coupling between the phases. The force exerted by a particle P on a unit volume of fluid is proportional to the 

difference in particle momentum between the instant it enters (tin) and leaves (tout) the control volume 

     



P

tptpp

cell

p
inout

m
tV

UUS
1

.        (11) 

This term is then added to the momentum equation of the carrier phase. In this work, the incompressible 

Navier-Stokes equations are solved for a gas with volume fraction  =1 - p where p is the volume fraction 

occupied by the particles, tensor stress τ and pressure p: 
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The stress tensor is given by: 
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where δ is the unit tensor and νc the kinematic viscosity. 

Finally, the four-way coupling, considering particle-particle interactions with collisional exchanges, is 

modelled through a Multiphase Particle-in-Cell (MP-PIC) method16. In this approach, particle-particle 

interactions are modeled using the mean values of the particles variables interpolated on the Eulerian mesh. 

Collisional damping models are employed to represent the mean loss in kinetic energy, which occurs as 

particles collide, while collisional isotropy models are used to describe the scattering, which occurs as a result 

of particle collisions. The viscous stress in the forces acting on the particles is neglected. In our case, this 

assumption is reasonable because air viscosity is low and the main driving factors are drag and pressure 

gradient. The solver includes a stochastic model, which uses a time-scale to calculate the probability of a 

particle undergoing a collision, which randomizes its velocity.  
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