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Experimental Procedures: 

General  

Chemicals and reagents were purchased from commercial suppliers (Sigma-Aldrich, VWR, 

Chem-Impex International) and used without further purification unless otherwise noted. Indole-

glycerol-phosphate (IGP) was a generous gift from the Reinhard Sterner Group. Multitron 

shakers (Infors) were used for cell growth. Unless otherwise stated, all reactions were conducted 

in borosilicate glass vials (Agilent), so as to prevent to absorption of indole into plastic at 

elevated temperatures. UV-vis spectra were collected on a UV1800 Shimadzu spectrophotometer 

(Shimadzu). LC-MS data were collected on an Agilent 1290 UHPLC with a 2.1 x 50 mm C-18 

silica column and a 6140 MS detector (Agilent Technologies). Samples were run using a mobile 

phase of water with 0.1% (v/v) acetic acid and ACN with 0.1% acetic acid. Samples were run 

with a linear gradient from 5-95% ACN + 0.1% acetic acid over four minutes. L-Trp eluted at 

0.48 min, β-MeTrp eluted at 0.63 min, and indole eluted at 1.74 min. 
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Cloning, expression, and purification of PfTrpS, TmTrpS and AfTrpS 

The genes encoding PfTrpB (UNIPROT ID Q8U093), PfTrpA (UNIPROT ID Q8U094), 

TmTrpB (UNIPROT ID P50909) and TmTrpA (UNIPROT ID P50908), were previously codon-

optimized for Escherichia coli and cloned into pET22(b)+ with a C-terminal his6-tag for the 

TrpBs, and without a his6-tag for the TrpAs.1, 2 Briefly, a single colony of E.coli BL21 E. cloni 

Express cells (Lucigen) harboring the TrpA or TrpB plasmid was used to inoculate a 5-mL 

culture of Terrific Broth with 100 µg/mL ampicillin (TBamp) and incubated overnight at 37 °C 

and 250 rpm. This culture was used to inoculate a 500-mL TBamp expression culture, which was 

incubated at 250 rpm and 37 °C for ~ 3 h or until an OD600 of 0.8 was reached. Cultures were 

chilled on ice for 20 min and expression was induced by the addition of 1.0 M isopropyl β-D-

thiogalactopyranoside (IPTG) to a final concentration of 1 mM. Cells continued to grow shaking 

at 250 rpm and 20 °C for another 20 h. Cells were harvested by centrifugation at 4 °C and 5,000 

g for 10 min; the pellets were frozen at -20 °C until further use.  

Frozen cell pellets were thawed at room temperature and resuspended in 50 mM potassium 

phosphate buffer, pH 8.0, with 200 µM PLP, 1 mg/mL hen egg white lysozyme, and 0.02 mg/mL 

DNAse. After vortexing, cells were lysed with BugBuster (Novagen) used at ½ the concentration 

recommended by the manufacturer. Lysates were then incubated at 75 °C for 20 min, chilled on 

ice, and cleared by centrifuged at 15,000 g and 4 °C for 20 min. The amount of TrpA and TrpB 

present in these heat-treated lysates was then estimated by SDS-PAGE, and the heteromeric TrpS 

complex was formed by mixing C-His-TrpB with an approximate two-fold molar excess of 

untagged TrpA. The resultant complex was purified by Ni-affinity chromatography on an AKTA 

purifier FPLC system (GE Healthcare). TrpS eluted during a linear gradient from buffer A (50 

mM phosphate buffer with 20 mM imidazole and 100 mM NaCl, pH 8.0) to buffer B (same as 
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buffer A, but with 500 mM imidazole) at 140 mM imidazole. This procedure was used for both 

PfTrpS and TmTrpS.  

For AfTrpS purification, AfTrpB (UNIPROT ID O28672) and AfTrpA (UNIPROT ID O28673) 

were codon-optimized for E. coli and cloned into pET22(b)+ and pET24(a), respectively. 

Expression cultures, lysis and centrifugation steps were done as described for the other 

homologs. After centrifugation, the supernatants of both proteins were independently injected in 

the AKTA purifier FPLC system for Ni-affinity chromatography. The linear gradient was the 

same as for PfTrpS and TmTrpS. AfTrpB eluted at 140 mM imidazole and AfTrpA at 220 mM.  

All purified proteins were dialyzed against 50 mM phosphate buffer, pH 8, frozen in liquid N2, 

and stored at -80 °C until further use. For AfTrpS, a ratio 2:1 of purified AfTrpA:AfTrpB was 

used. 

 

Kinetics 

β-methyl-tryptophan (β-MeTrp) synthase activity of PfTrpS was measured by monitoring 

product formation in a UV1800 Shimadzu spectrophotometer (Shimadzu) at 75 °C over 1 min at 

290 nm using Δε290 = 1.89 mM-1 cm-1 at low concentrations of indole, and by end-point initial 

velocity measurements for high concentrations of indole. 1 The assay buffer contained 200 mM 

potassium phosphate pH 8.0, 3 µM PfTrpS, and 5 µM PLP.  

Michaelis-Menten constants (KM) for indole were determined using a concentration range of 5.0–

0.05 mM indole with the concentration of L-threonine fixed at 25 mM. For the concentration 

range 0.3–0.05 mM indole, the continuous spectrophotometric assay described above was 

employed. A discontinuous assay was used to measure initial velocities at higher concentrations 

of indole. These reactions were conducted at 75 °C and 30, 60, and 120 s time points were taking 
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by quenching an aliquot of the reaction mixture in an equal volume of 100 % acetonitrile (ACN). 

Denatured protein was then cleared from these aliquots by centrifugation, and the product 

formation was assessed by LC-MS analysis integrating the peak heights at 277 nm, the isosbestic 

point in the conversion of indole to β-MeTrp.3 This assay showed good overlap with the 

continuous assay for lower concentrations of indole, but was generally subject to higher 

experimental error (Figure S3).  

The KM value for L-threonine was determined with the concentration of indole fixed at 7 mM and 

the initial velocities were measured via LC-MS (as described above) for 10 concentrations of L-

threonine 0.5 to 20 mM. Data were fit using an in-house non-linear least squares algorithm to the 

Michaelis-Menten equation implemented in MatLab. The kcat for the overall reaction (Table 1) 

was determined from the titration of indole (above).  

The deamination rates with L-serine and L-threonine were measured using a continuous 

spectrophotometric assay that measures production of their corresponding α-ketoacids. The 

extinction coefficients for pyruvate and α-ketobutyrate at 75 °C are Δε320 = 20.0 M-1 cm-1 and 

Δε320 = 21.4 M-1 cm-1, respectively. The rates of deamination with L-serine and L-threonine were 

determined by monitoring the whole UV-vis spectrum (described below) every minute for 10−30 

min using 10−20 µM PfTrpS and 20 mM Ser or Thr and measuring α-ketoacid formation at 320 

nm.  

 

UV-vis spectroscopy 

Spectra were collected between 550 and 250 nm on a UV1800 Shimadzu spectrophotometer 

(Shimadzu) using 20 µM of enzyme in 200 mM potassium phosphate pH 8.0 in a quartz cuvette. 

Samples were incubated at 75 °C for > 3 min to ensure a stable temperature was reached. Stage I 
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of the reaction was initiated by addition of 20 mM L-threonine. The initial spectrum was 

measured in < 15 s to limit production of α-ketobutyrate from deamination of L-threonine, and 

subsequent spectra were collected every minute. An example of the resultant spectrum is shown 

in Figure S1, which had an additional 1 mM indole added before the addition of amino acid. 

 

Coupling efficiency determination 

An aqueous 200 µL solution containing an equal concentration of IGP and L-serine or L-

threonine (each reagent at either 1 or 2 mM) was prepared in 0.2 M potassium phosphate buffer 

pH 8.0, to which 3 μM PfTrpS was added. On top of this aqueous reaction solution, 200 µL of 

toluene were added, which serves to trap indole that escapes from the PfTrpS tunnel. Reactions 

proceeded for 1 h at 75 °C and were cooled on ice to slow the reaction. A 50-100 µL aliquot of 

each layer was taken and diluted with and equal volume of ACN, which served to fully quench 

the reaction. Samples were transferred to an Eppendorf tube, pelleted at 14,000 RPM and the 

ratio of indole to L-Trp or β-MeTrp analyzed via LC-MS at 277 nm.  

 

Ser-Thr specificity measurement 

The specificity for L-serine in the full catalytic cycle was determined from a 200 µL reaction 

containing 6 µM PfTrpS, 10 µM AfTrpS, or 10 µM TmTrpS, 0.135 mM IGP, 0.5 mM L-serine, 

500 mM L-threonine in 0.2 M potassium phosphate buffer pH 8.0. The reaction was allowed to 

proceed for 1 h at 75 °C for PfTrpS and TmTrpS and at 60 °C for AfTrpS. Reactions were 

quenched with 200 µL ACN and analyzed via LC-MS. See Table S1 for further details.  

Specificity for the β-substitution reaction of PfTrpS using indole (just the β-subunit catalytic 

cycle) was measured from reactions with a 100-fold molar excess of L-threonine to L-serine in 
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direct competitions. Reactions were set up at three different concentrations of the substrates that 

maintained a constant ratio of their concentrations, as described in Table S1. Reactions were 

conducted with 0.2 mol % PfTrpS and incubated at 75 °C until all of the indole was converted 

into product, and the enzyme was precipitated by addition of an equal volume of ACN. The 

reactions were analyzed via LC-MS and the results are shown in Table S1. The results from all 

three conditions were combined by calculating their error-weighted average, which yields a 711-

fold specificity for L-serine over L-threonine in the presence of exogenous indole. 

 

Protein Crystallography 

PfTrpB was crystallized under previously reported conditions1 and grown in sitting drops against 

a 1-mL reservoir of 15-25% PEG3350 and 0.1 M Na HEPES pH 7.85 with mother liquor 

comprised of 1.5 µL of 8.0 mg/mL PfTrpB and 1.5 µL of well solution. Enzymatically 

synthesized and purified β-MeTrp3 (~1 mg) was added as a solid to pre-formed crystals and 

allowed to equilibrate overnight. Crystals were cryo-protected through oil immersion in Fomblin 

Y (Sigma) and flash frozen in liquid N2 until diffraction. Diffraction data were collected 

remotely at the Stanford Synchrotron Radiation Laboratories on beamline 12-2. Crystals 

routinely diffracted at or below 2.0 Å, and the data were integrated and scaled using XDS 4 and 

AIMLESS.5 A resolution cutoff of CC1/2 > 0.3 was applied along the strongest axis of 

diffraction.5, 6 These data contributed to model quality as judged by Rfree in the final bin < 0.4. 

The structure was solved using molecular replacement with PHASER, as implemented in 

CCP4.7, 8 The search model comprised a single monomer of PfTrpB (PDB ID: 5DW3) subjected 

to 10 cycles of geometric idealization in Refmac5 and removal of all ligands. Model building 

was performed in Coot 9 beginning with data processed at 2.4 Å, followed by subsequent 
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inclusion of increasingly higher resolution shells of data with relaxed geometric constraints. 

Refinement was performed using REFMAC5.10 Restraints for the β-MeTrp ligand were 

calculated using the PRODRG online server.11 The MolProbity server was used to identify 

rotamer flips and clashes.12 After the protein, ligand, and solvent atoms were built, TLS 

operators were added to refinement, which resulted in substantial improvements in Rfree for the 

models. Crystallographic and refinement statistics are reported in Table S2. The structure is 

deposited with PDB ID: 5T6M. 
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Supplemental Tables: 
 
Table S1. Specificity of TrpS enzymes for Ser vs. Thr measured from direct competition 

 

+ Integration of the absorbance peak from a trace at 277 nm. 
*Integration of the appropriate extracted [M+1] ion count detected by the MS. 
N.D. =  Not detected. 
Activity measured using 6 µM PfTrpS, 10 µM of AfTrpS or TmTrpS in 0.2 M potassium phosphate buffer 
pH 8.0 with a 1-h reaction at 75 °C for PfTrpS and TmTrpS and 60 °C for AfTrpS. All experiments 
conducted in triplicate. Specificity calculated as the ratio of the Trp and β-MeTrp products multiplied by 
the molar excess of Thr. Overall specificity quoted in the text was calculated as the weighted average over 
all experiments conducted at different concentrations of substrates. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enzyme [Ser] 
(mM) 

[Thr] 
(mM) 

[Indole] 
(μM) 

[IGP] 
(μM) 

Trp β-MeTrp Specificity for Ser 

PfTrpS 0.5 50 300 0 397+ 55+ 723 ± 8 
PfTrpS 1 100 500 0 764+ 124+ 618 ± 23 
PfTrpS 2 200 1000 0 1,380+ 224+ 615 ± 93 
PfTrpS 0.5 500 0 135 175,679* N. D.* >82,000 
TmTrpS 0.5 500 0 135 136,173* 1,658* ~82,000 
AfTrpS 0.5 500 0 135 131,599* N. D.* >82,000 
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Table S2. Crystallographic data collection and refinement statistics 

Protein  PfTrpB 

Ligand  (2S,3S)-β-
methyltryptophan 

Data Collection 
Space group  P212121 

Cell dimensions (Å)  a,b,c =  82.8, 107.7, 160.1 
Cell angles  α = β = γ = 90° 

Wavelength (Å)  0.9795 
Beamline  SSRL 12.2 

Resolution (Å)  40 – 1.8 
Last Bin (Å)  (1.83 – 1.80) 

No. Observations  1,778,223 
Completeness (%)  99.4 (98.7) 

Rpim (%)  0.032(1.032) 
CC(1/2)  0.999 (0.452) 

I/σI  12.8 (0.9) 
Redundancy  13.5 (13.8) 

Refinement 
Total no. of reflections  125,283 

Total no. of atoms  12,028 
Final bin (Å)  (1.85– 1.80) 

Rwork (%)  20.4 (37.2) 
Rfree (%)  23.8 (39.1) 

Average B factor (Å2)  39.9 
Ramachandran plot 

Favored, %  97.9 

Allowed, %  99.8 
Outliers, %  0.2 

Values in parenthesis are for the highest resolution shell 
Rmerge is Σ|Io – I| / ΣIo , where Io is the intensity of an individual reflection, and I is the mean 
intensity for multiply recorded reflections 
Rwork is Σ||Fo – Fc|| / Fo, where Fo is an observed amplitude and Fc a calculated amplitude;  
Rfree is the same statistic calculated over a 5% subset of the data that has not been included. 
Ramachandran statistics calculated by the Molprobity server. 
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Supplemental Figures 

 

Figure S1. UV-vis spectra of PfTrpS under turnover conditions with L-Thr and indole. 
Incubation of 20 µM PfTrpS with 1 mM indole in 0.2 M potassium phosphate buffer pH 8.0 
shows the resting state of the enzyme, E(Ain), in black. Addition of 20 mM L-Thr results in a 
spectral shift as the enzyme reaches steady state. Spectra are colored from light gray to dark blue 
with one minute separating each line. This steady state reflects β-substitution, described in Table 
1, and β-elimination, demonstrated by the increase in absorbance at 320 nm.   

 

 

Figure S2. Electron density maps showing the non-covalently bound β-MeTrp ligand. Panel A 
shows β-MeTrp bound in the same orientation described in Figure 3A. The 2mFo-DFc map 
(blue) is contoured at 1.5 σ and the mFo-DFc omit map (green = positive density, red = negative 
density) calculated from a model where the ligand was never included is contoured at 4.0 σ. 
Panel B shows β-MeTrp bound in the same orientation described in Figure 3B. This ligand is 
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likely bound at incomplete occupancy, as indicated by the weaker density. The 2mFo-DFc map 
is contoured at 1.0 σ and the mFo-DFc omit map is contoured at 3.0 σ. 

 

 

Figure S3. Determination of the Michaelis-Menten parameters for β-substitution of Thr with 
indole. The initial velocity kinetics of PfTrpS (A) were fit to the Micheaelis-Menten equation 
using an in-house non-linear least squared fitting procedure. Data were collected by two 
techniques (spectrophotometric, blue; end-point, orange) and the normalized residual (Vobs-
Vcalc)/Vcalc, in panel B demonstrates that end-point assay is subject to more error, but that the 
data generally merge well. 
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