
SUPPLEMENTAL INFORMATION

Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors VEGF-C and VEGF-D

Natalia Davydova, Nicole C. Harris, Sally Roufail, Sophie Paquet-Fifield, Musarat Ishaq, Victor A. Streltsov, Steven P. Williams, Tara Karnezis, Steven A. Stacker and Marc G. Achen

Supplementary Figure 1. Analysis of purified variants of VEGF-D Δ N Δ C and VEGF-C Δ N Δ C used in this study by SDS-PAGE and Coomassie staining. Proteins (approximately 1 μ g) were subjected to SDS-PAGE under reducing conditions and stained with Coomassie Brilliant Blue. The expected sizes of the subunits of VEGF-D Δ N Δ C and VEGF-C Δ N Δ C variants are ~22 and ~24 kDa, respectively. The multiple bands detected in the 18 to 24 kDa range for variants of VEGF-C Δ N Δ C are likely due to variable degrees of glycosylation. Dotted lines indicate where irrelevant tracks have been removed from the images. Molecular weight markers in kDa are shown to the right of the images.

Supplementary Table 1. Nucleotide sequences of primers used to generate protein variants by site-directed mutagenesis.

Protein variant ¹	Primer pair sequence ²
F93A	gacgacgacaagacgcgtaacgcctatgacattgaaacactaaa
Y94A	tttagtgtttcaatgtcataggcgttacgcgtcttgtcgtcgtc gacgacgacagacgcgtaatttcgctgacattgaacactaaaagttat
D95A	ataacttttagtgtttcaatgtcagcgaaattacgcgtcttgtcgtcgtc cgacaagacgcgtaacttctatgccattgaaacactaaaaagttataga tchtagtgttttagtgtttagtgaatgaagttagaagttaga
196A	tctataacttttagtgtttcaatggcatagaagttacgcgtcttgtcg cgacaagacgcgtaacttctatgacgctgaaacactaaaagttatagatgaa
E97A	ttcatctataacttttagtgtttcagcgtcatagaagttacgcgtcttgtcg gacgcgtaacttctatgacattgcaacactaaaagttatagatgaag cttcatctataacttttagtgttgcaatgtcatagaagttacgcgtc
T98A	caagacgcgtaacttctatgacattgaagcactaaaagttatagatg catctataacttttagtgcttcaatgtaagaagttacgcgtcttg
L99A	gcgtaactcttatgacattgaaacagcaaaagttatagatgaagaatggcaa ttgccattcttcatctataacttttgctgtttcaatgtcatagaagttacgc
K100A	gcgtaatttctatgacattgaaacactagcagttatagatgaagaagt gcgtaatttctatgacattgaaacactagcagttatagatgaagaatggcaa ttgccattcttcatctataactgctagtgtttcaatgtcatagaaattacgc
V101A	tgacattotactatagacagagagagagaatgaaagaattgaaagaattgacatagaattgacaatgaaatgaattgacaatgaaacactaaaagctatagaatgaat
I102A	cttctatgacattgaaacactaaaagttgcagatgaagaatggcaaagaactca tgagttctttgccattcttcatctgcaacttttagtgtttcaatgtcatagaag
D103A	cattgaaacactaaaagttatagctgaagaatggcaaagaactcag ctgagttctttgccattcttcagctataacttttagtgtttcaatg
E104A	gaaacataaaagttatagattaagattagcaaagaactcagtgc gcactgagttctttgccattctgcatctataacttttagtgtttc
E105A	cactaaaagttatagatgaagcatggcaaagaactcagtgcag ctgcactgagttctttgccatgcttcatctataacttttagtg
W106A	attgaaacactaaaagttatagatgaagaagcgcaaagaactcagtgcagc gctgcactgagttctttgcgcttcttcatctataacttttagtgtttcaat
Q107A	aaagttatagatgaagaatgggcaagaactcagtgcagccctag clagggctgcactgaqttcttgcccattcttcatctataacttt
R108A	gttatagatgaagaatggcaagcaactcagtgcagcctagag ctctagggctgcactgagttgcttgccattcttcatctataac
Y94A (U)	gcttcaatctcggcgctaatttcgctgacattgaaacactaaaagttat ataacttttagtgtttcaatgtcagcgaaattacgcgccgagattgaagc
K100A (U)	cgcgtaatttctatgacattgaaacactagcagttatagatgaagaatggcaaa tttgccattcttcatctataactgctagtgtttcaatgtcatagaaattacgcg
I102A (U)	atttctatgacattgaaacactaaaagttgcagatgaagaatggcaaagaactcag ctgagttctttgccattcttcatctgcaacttttagtgtttcaatgtcatagaaat
VEGF-D3Ala	caaggacgacgacgacgagaaggcgtaacgccgctgccattgaaacactaaaagttatagatgaag cttcatctataacttttagtgtttcaatggcagcggcgttacgcgtcttgtcgtcgtccttg
VEGF-D5Ala	caagacgcgtaatgccgctgccgctgcaacactaaaagttatagatgaag ttcatctataacttttagtgttgcagcggcagcggcattacgcgtcttg
VEGF-D6Ala	gacaagacgcgtaatgccgctgcagcactaaaagttatagatgaagaatg cattcttcatctataacttttagtgctgcagcggcagcggcattacgcgtcttgtc
VEGF-D7Ala	cgctgcagcagcaaaagttatagatgaagaatggc gcagcggcattacgcgtc
VEGF-D8Ala	tgcagcagcagttatagatgaagaatggcaaagaac gcggcagcggcattacgc
VEGF-C3Ala	tcaaggacagaagagctataaaatttgctgcagcagctgctgctacagagatcttgaaaagtattgataatgagtggag ctccactcattatcaatacttttcaagatctctgtagcagcagctgctgcagcaaattttatagtctcttctgtccttga
VEGF-C5Ala	tcaatacttttcaagatcgctgcagcagctgctgcag ctgcagcagctgctgctgcagcagtcttgaaaagtattga
VEGF-C6Ala	tgctgcagcggccttgaaaagtattg gcagctgctgcagcaaat
VEGF-C7Ala	tgcagcggccgcgaaaagtattgataatgagtgg gcagcagctgctgcagca
VEGF-C8Ala	tgcagcggcgcgggaagtattgataatgagtggagaaagac gcagcagctgctgcagca
VEGF-CΔ3	acttttcaagatctctgtattatatgctgcagcaaattttatagtctc gagactataaaatttgctgcagcatataatacagagatcttgaaaagt
VEGF-CΔ6	aatacttttcaagatctctgtatttgctgcagcaaattttatagtctc gagactataaaatttgctgcagcaaatacagagatcttgaaaagtatt
VEGF-CΔ9	agagactataaaatttgctgcagcaacagagatcttgaaaagtattga tcaatacttttcaagatctctgttgctgcagcaaattttatagtctct

¹All proteins are tagged with the FLAG octapeptide except those indicated by "(U)" which are untagged ²For each primer pair, the first line is forward primer and the second is reverse primer