Malignant pleural effusion and ascites induce epithelial–mesenchymal transition and cancer stem-like cell properties via VEGF/PI3K/Akt/mTOR pathway

Tao Yin^{a,1}, Guoping Wang^{a,1}, Sisi He^a, Guobo Shen^a, Chao Su^a, Yan Zhang^a, Xiawei Wei^a, Tinghong Ye^a, Ling Li^a, Shengyong Yang^a, Dan Li^a, Fuchun Guo^a, Zemin Mo^a, Yang Wan^a, Ping Ai^a, Xiaojuan Zhou^a, Yantong Liu^a, Yongsheng Wang^a, Yuquan Wei^a

^aDepartment of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China

¹Both authors contributed equally to this work.

Supplementary Information

Supplementary Figure S1. Targeting PI3K/AKT/mTOR pathway is effective for ascetic ovarian cancers. A, BALB/c-nude mice bearing SKOV3 ovarian cancer were treated with vehicle, cisplatin, rapamycin, and cisplatin plus rapamycin, respectively. Representative pictures of tumors in peritoneal cavity with large (arrowhead) and small (arrow) diameters. B, the numbers of large (left panel) and small (right panel) tumors was depicted for the respective treatment groups (n=3-5). *, P < 0.05. C, tumor weight was depicted for the respective treatment groups (n=3-5). *, P<0.05 versus vehicle, #, P<0.05 versus rapamycin and cisplatin.

Supplementary Figure S2. Albumin does not induce epithelial-mesenchymal transition in tumor cells. A, representative phase contrast images of human breast cancer cells MCF-7 cultured with various concentrations of human albumin for twenty days. Scale bar, 50 μ m. B, expression of E-cadherin and vimentin in MCF-7 cells treated with albumin. C-D, flow cytometry analysis of MCF-7 cells treated with albumin and their parental cells for CD44 and CD24. CD44+/CD24- stem cells were quantified. *, P < 0.05.

	-	Pt10			Pt11		-	Pt42		
PE/ascites	_	+	+	-	+	+	_	+	+	
αVEGF		—	+	—	_	+	_	-	+	
p-P70S6K	1000	-	give.	-			-	-	-	
GAPDH	-	-	-	_	_	-	-	-	-	

Supplementary Figure S4. VEGF neutralization reversed the mTOR pathway activation induced by malignant PE and ascites. MCF-7 cells were treated with malignant PE and ascites for 30 min in the absence or presence of 10µg/ml VEGF antibody. Cell lysates were analyzed by western blot with antibodies against p-P70S6K. GAPDH served as the loading control.

Patients	Sex	Age	Cancer type Effusion type	
		(years)		
1	F	42	Breast Cancer	Pleural effusion
2	F	72	Lung Cancer	Pleural effusion
3	М	59	Gastric Cancer	Ascites
4	М	17	Lymphoma	Pleural effusion
5	М	59	Colorectal Cancer	Pleural effusion
6	М	76	Lung cancer	Pleural effusion
7	F	65	Lung Cancer	Pleural effusion
8	F	73	Breast Cancer	Pleural effusion
9	F	50	Lung Cancer	Pleural effusion
10	F	48	Colorectal Cancer	Pleural effusion
11	F	53	Lung Cancer	Ascites
12	М	68	Lung Cancer	Pleural effusion
13	М	76	Lung Cancer	Pleural effusion
14	F	36	Lung Cancer	Pleural effusion
15	М	51	Peritoneal mesothelioma	Ascites
16	М	47	Lung Cancer	Pleural effusion
17	F	62	Lung Cancer	Pleural effusion
18	М	43	Colorectal Cancer	Ascites

Supplementary Table S1. Characteristics of human malignant and ascites specimens.

19	М	65	Lung Cancer	Pleural effusion	
20	F	72	Ovarian Cancer	Ascites	
21	F	25	Lymphoma	Pleural effusion	
22	М	90	Lymphoma	Pleural effusion	
23	F	44	Lung Cancer	Pleural effusion	
24	F	45	Gastric Cancer	Pleural effusion	
25	М	48	Gastric Cancer	Ascites	
26	М	47	Peritoneal mesothelioma	Ascites	
27	М	69	Lung Cancer	Pleural effusion	
28	М	55	Hepatocarcinoma	Ascitis	
29	М	43	Lung Cancer	Pleural effusion	
30	F	67	Liver metastatic adenocarcinoma	Ascites	
31	М	51	Left axillary lymph nodes metastatic adenocarcinoma	Pleural effusion	
32	М	55	Lung Cancer	Pleural effusion	
33	F	73	Lung Cancer	Pleural effusion	
34	М	35	Lung Cancer	Pleural effusion	
35	М	38	Lung Cancer	Pleural effusion	
36	F	60	Ovarian Cancer	Ascites	
37	F	64	Lung Cancer	Pleural effusion	
38	F	48	Colorectal Cancer	Pleural effusion	
39	F	53	Lung Cancer	Pleural effusion	
40	М	71	Lung Cancer	Pleural effusion	
41	F	55	Lung Cancer	Pleural effusion	
42	М	38	Lung Cancer	Pleural effusion	
43	М	55	Gastric Cancer	Ascites	
44	М	66	Colorectal Cancer	Ascites	
45	М	59	Gastric Cancer	Ascites	
46	М	46	Lung Cancer	Pleural effusion	
47	F	51	Lung Cancer	Pleural effusion	

|--|

gene	Forward	Reverse
Sox2	AGAACCCCAAGATGCACAAC	CGGGGCCGGTATTTATAATC
ABCB1	AGGTTCCAGGATTGGCGTCTT	CCAGTCATTGCTGCGGTTTCA
ABCG2	AATACATCAGCGGATACTACAGAG	AGCCACCATCATAAGGGTAAACAT
Patch	AAACCTCCTTTGCGGTGGACAAAC	TGTAACCATGACCAACCTCAGCCT
Smo	ACCTATGCCTGGCACACTTC	GTGAGGACAAAGGGGAGTGA
Gli-1	CCCAATCACAAGTCAGGTTCCT	CCTATGTGAAGCCCTATTTGCC
Nodal	AGCATGGTTTTGGAGGTGAC	CCTGCGAGAGGTTGGAGTAG
Cripto-1	TCCTTCTACGGACGGAACTG	ATCACAGCCGGGTAGAAATG
Activin	AAAGCTTCATGTGGGCAAAG	AATCTCGAAGTGCAGCGTCT
GAPDH	CAGGAGCGAGATCCCT	GGTGCTAAGCAGTTGGT