S1 Fig.

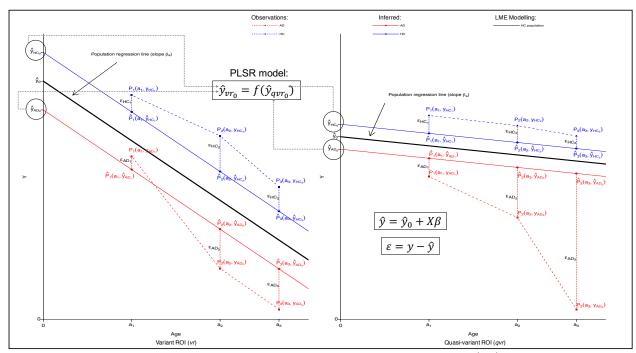


Fig 1. Example of LME modelling for hypothetical variant (vr) and quasi-variant (qvr) ROIs.

HC and AD are hypothetical subjects. P_1 , P_2 and P_3 are observations of each ROI y at three different ages $(a_1, a_2 \text{ and } a_3)$. Black lines, healthy population regression line calculated from LME. \hat{y}_0 , vertical y-intercept value of healthy population. Blue and red lines, individual regression lines estimated by assuming both as healthy. Points \hat{P}_1 , \hat{P}_2 and \hat{P}_3 , inferred \hat{y} 's for the three ages. \hat{y}_{HC_0} and \hat{y}_{AD_0} , the subject-specific y-intercepts estimated for HC and AD subjects, respectively. \hat{y}_{HC_0} and \hat{y}_{AD_0} of vr ROI are inferred from the \hat{y}_{HC_0} and \hat{y}_{AD_0} of qvr ROI through PLSR model. β_a , slope or rate change of the standard deviation of ROI per unit of age. ϵ_{HC_1} , ϵ_{HC_2} , ϵ_{HC_3} , ϵ_{AD_1} , ϵ_{AD_2} and ϵ_{AD_3} , the residuals of each observation with respect to the estimated individual regression lines.