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1 GWAS data

In this section, we describe the sources of the GWAS data used in the paper and initial analyses of the
numbers of associations identified in each. Overall, for each study, we imputed summary statistics or geno-
types for all autosomal variants in the March 2012 release of the 1000 Genomes Phase 1 [Abecasis et al.,
2010]. Our method uses the Z-scores and standard errors of the estimated effect sizes for each SNP. In
studies where standard errors were not provided, we approximated them using the allele frequencies from
the European-descent individuals in the 1000 Genomes Phase 1 release and the reported sample size of the
study (see Pickrell [2014] for details). Throughout the paper, we report effect sizes of variants as the effect
of the non-reference allele in human genome reference hg19.

1.1 Previously described in Pickrell [2014]

For some phenotypes, the data sources and processing were previously described in Pickrell [2014]. These
are (using the abbreviations from the main text): FG, LDL, HDL, TG, TC, FNBMD, LSBMD, PLT, MPV,
HB, MCHC, RBC, MCV, and PCV.

1.2 Body mass index

The GIANT consortium GWAS data described in Locke et al. [2015] was downloaded from http://www.

broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files. We re-
moved all SNPs typed on less than 200,000 individuals or more than 240,000 individuals, then performed
imputation at the level of the summary statistics. After removing poorly-imputed SNPs (at an r2 threshold
less than 0.8), we were left with 6,133,872 summary statistics. To approximate the variance in the effect size
estimates, we used a sample size of 240,000 and the allele frequencies estimated from the European-descent
individuals in the 1000 Genomes Project.

1.3 Waist-hip ratio

We downloaded summary statistics from the GIANT consortium GWAS of waist-hip ratio corrected for
BMI [Shungin et al., 2015] from http://www.broadinstitute.org/collaboration/giant/index.

php/GIANT_consortium_data_files. We used the summary statistics generated using both males and
females together. We removed all SNPs genotyped on less than 130,000 individuals or more than 150,000
individuals, then performed imputation at the level of summary statistics. After removing poorly-imputed
SNPs (at an r2 threshold less than 0.8), we were left with 5,859,436 summary statistics. To approximate the
variance in the effect size estimates, we used a sample size of 142,762 and the allele frequencies estimated
from the European-descent individuals in the 1000 Genomes Project.

1.4 Coronary artery disease

The CARDIoGRAM GWAS data described in Schunkert et al. [2011] was downloaded from http://

www.cardiogramplusc4d.org/downloads/. We removed all SNPs typed on less than 15,000 cases or
50,000 controls, then imputed summary statistics for all SNPs in the 1000 Genomes Phase 1 release using
ImpG [Pasaniuc et al., 2014]. After removing poorly-imputed SNPs (at an r2 threshold less than 0.8), we
were left with 5,768,612 summary statistics on an average of around 15,000 cases and 50,000 controls. To
approximate the variance in the effect size estimates we used the allele frequencies from the European-
descent individuals in the 1000 Genomes Project.
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1.5 Crohn’s disease

We obtained updated versions of the summary statistics from the GWAS described in Jostins et al. [2012]
from http://www.broadinstitute.org/~sripke/share_links/KMaiXtod0Alvozgg5oJgl3QK7VVH2N_

IBD_0711a/, and processed them as described previously [Pickrell, 2014]. After imputation, we had
6,065,937 summary statistics.

1.6 Ulcerative colitis

We obtained updated versions of the summary statistics from the GWAS described in Jostins et al. [2012]
from http://www.broadinstitute.org/~sripke/share_links/KMaiXtod0Alvozgg5oJgl3QK7VVH2N_

IBD_0711a/, and processed them as described previously [Pickrell, 2014]. After imputation, we had
6,067,283 summary statistics.

1.7 Educational attainment

Summary statistics from the GWAS described in Okbay et al. [2016] were kindly provided by the Social
Science Genetic Association Consortium and 23andMe. The data consist of summary statistics at 9,256,491
variants.

1.8 Type 2 diabetes

The DIAGRAM consortium summary statistics described in Morris et al. [2012] were downloaded from
http://diagram-consortium.org/downloads.html. We removed SNPs typed on less than 9,000
cases or 50,000 controls, then imputed summary statistics for all variants in the 1000 Genomes Phase 1
release. After imputation, we had 5,824,487 summary statistics. To approximate the variance in the effect
size estimates we used the allele frequencies from the European-descent individuals in the 1000 Genomes
Project.

1.9 Alzheimer’s disease

Summary statistics from the IGAP (International Genomics of Alzheimer’s Project) consortium GWAS
[Lambert et al., 2013] were downloaded from http://www.pasteur-lille.fr/en/recherche/u744/

igap/igap_download.php. As per the description of the data:

International Genomics of Alzheimer’s Project (IGAP) is a large two-stage study based upon
genome-wide association studies (GWAS) on individuals of European ancestry. In stage 1,
IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs)
to meta-analyse four previously-published GWAS datasets consisting of 17,008 Alzheimer’s
disease cases and 37,154 controls (The European Alzheimer’s disease Initiative - EADI the
Alzheimer Disease Genetics Consortium - ADGC The Cohorts for Heart and Aging Research
in Genomic Epidemiology consortium - CHARGE The Genetic and Environmental Risk in AD
consortium - GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in
an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. Finally, a meta-
analysis was performed combining results from stages 1 & 2.

We used only the stage 1 results in all analysis.
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1.10 Schizophrenia

Summary statistics from the psychiatric genomics consortium GWAS [Psychiatric Genomics Consortium,
2014] were downloaded from http://www.med.unc.edu/pgc/downloads. The data consist of summary
statistics at 9,444,231 variants.

1.11 Height

Summary statistics from the GIANT consortium GWAS [Wood et al., 2014] were downloaded from http:

//www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files.
We removed all SNPs with a sample size less than 230,000, then imputed summary statistics for all variants
in the 1000 Genome Phase 1 release. After imputation, we had 6,021,095 summary statistics. To approxi-
mate the variance in the effect size estimates, we used a sample size of 230,000 and allele frequencies from
the European individuals in the 1000 Genomes Project.

1.12 Age at menarche

Summary statistics from the Reprogen consortium GWAS [Perry et al., 2014] were downloaded from http:

//www.reprogen.org/data_download.html. We imputed summary statistics for all variants in the 1000
Genome Phase 1 release. After removing poorly-imputed SNPs, we had 6,277,050 summary statistics. To
approximate the variance in the effect size estimates, we used a sample size of 132,989 and the allele
frequencies from the European-descent individuals in the 1000 Genomes Project.

1.13 Rheumatoid arthritis

Summary statistics from http://plaza.umin.ac.jp/~yokada/datasource/files/GWASMetaResults/.
We used the GWAS conducted in European-descent individuals only. These data consist of 8,747,963 sum-
mary statistics.

1.14 23andMe data

GWAS for a number of traits were performed by the personal genomics company 23andMe using a survey
design [Eriksson et al., 2010]. Some of these GWAS have been partially described previously [Do et al.,
2011; Eriksson et al., 2012a, 2010, 2012b; Kiefer et al., 2013]. Details of each GWAS are described in
separate Supplementary Data.

We used filters and summary data described in the Supplementary Data, with two exceptions: for both
allergies and Parkinson’s disease, we used more stringent thresholds for genotyping batch effects. Specifi-
cally, 23andMe reports a P-value for whether the allele frequencies of each SNP are associated to genotyping
batch or to imputation batch. We used P-value thresholds of P = 1× 10−7 and 1× 10−6, respectively, for
these two studies. This more stringent cutoff was used to account for an imbalance in the enrollment of
cases versus controls over time in these two studies. Some small residual batch effect likely explains the
small correlation in effect sizes between Parkinson’s disease and allergies in Figure 4 in the main text.

1.15 Counting independent numbers of associated variants

For each genome-wide association study, we ran fgwas v.0.3.6 [Pickrell, 2014] with the default settings,
except that rather than splitting the genome into blocks with equal numbers of SNPs (as in Pickrell [2014]),
we split the genome into approximately independent blocks based on patterns of linkage disequilibrium in
the European populations in Phase 1 of the 1000 Genomes Project [Berisa and Pickrell, 2015]. These blocks
are available at https://bitbucket.org/nygcresearch/ldetect-data. We used fgwas to estimate
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the prior probability that any block contains an association. The output of this model is, for each region of
the genome, the posterior probability that it contains a variant that influences the trait. We used a threshold
of a posterior probability of association of 0.9, as in Pickrell [2014], which can be roughly interpreted as a
false discovery rate of 10%. For analyses that use variants identified in these individual GWAS, we extracted
the single SNP from each region with the largest posterior probability of being the causal SNP in this model.

1.16 Approximating the correlations in the effect sizes under the null model

For genome-wide association studies of correlated traits performed on overlapping individuals, we expect
the observed association statistics of a given variant to both traits to be correlated, even under the null model
that the variant influences neither trait. To approximate this expected correlation, for both traits we extracted
all genomic regions with a posterior probability of containing an association less than 0.2 (using the method
described above). We then extracted all SNPs from these regions, and calculated the correlation in the Z-
scores between the two traits (using all SNPs remaining in both studies). This correlation is a function of
the number of overlapping samples and the correlation in the phenotypes. Specifically, if ~g1 is a vector of
(mean-centered) genotypes at a variant in study 1,~x is a vector of (standard normally distributed) phenotypes
in study 1, ~g2 is a set of is a vector of genotypes at a variant in study 2, and ~y is a vector of phenotypes in
study 2, then:

Cor(Z1,Z2) = E
[

∑i g1ixi√
∑i g2

1i

∑ j g2 jy j√
∑ j g2

2 j

]
(1)

≈ N0√
N1N2

ρ, (2)

where N0 is the number of overlapping individuals in the two studies, N1 is the number of individuals in
study 1, N2 is the number of individuals in study 2, and ρ is the correlation between the phenotypes. We
used this summary statistic-level correlation (later called C) as a correction factor in all pairwise GWAS.

2 Hierarchical model

In this section we describe the hierarchical model used for the main scan for overlapping association signals
in two GWAS. Our goal is to write down a model that allows us to estimate the probability that a genomic
locus contains a variant that influences two traits. Our approach is to split the genome into non-overlapping
regions (we used the same approximately independent blocks as above); each region then falls into one of
five categories, following Giambartolomei et al. [2014]:

0. There are no SNPs in the region that influence either trait (denoted RM0, for regional model 0),

1. There is one causal SNP in the region that influences the first trait (RM1),

2. There is one causal SNP in the region that influences the second trait (RM2),

3. There is one causal SNP in the region that influences both traits (RM3),

4. There are two causal SNPs in the region, one of which influences the first trait and one of which
influences the second (RM4).

We will estimate the proportion of genomic regions in each of these categories with an empirical Bayes
approach. Note that we do not consider situations where multiple variants in a region influence a single trait,
though in principle the model could be extended to allow this possibility. In what follows, we start by writing
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down the model for the simplest case where two phenotypes have been studied in separate cohorts, and then
introduce modifications for the more complex situations that arise in real data. Software implementing the
model is available at https://github.com/joepickrell/gwas-pw.

In the simplest case, consider two separate genome-wide association studies performed on two traits. In
this case, the model is a hierarchical version of that in Giambartolomei et al. [2014], which we re-iterate
here for completeness. Let there be N1 individuals in GWAS of the first phenotype and N2 individuals in
the GWAS of the second phenotype. We start by considering a single SNP. Let~g be the vector of genotypes
at the SNP in the first study,~h be the vector of genotypes at the SNP in the second study, ~x be the vector
of phenotype measurements for the first phenotype (assumed to be distributed as a standard normal), and
~y be the vector of phenotype measurements for the second phenotype (also assumed to be distributed as a
standard normal). We first need a measure of the evidence that the SNP influences each of the traits.

2.1 Bayes factor calculations

We use a simple linear regression model to relate the phenotypes and the genotypes:

E[xi] = β1gi (3)

E[y j] = β2h j. (4)

There are four potential models to consider for this SNP:

0. M0: the SNP is associated with neither trait

1. M1: the SNP is associated with the first trait (but not the second)

2. M2: the SNP is associated with the second trait (but not the first)

3. M3: the SNP is associated with both traits.

Model M0 corresponds to the case where β1 = 0 and β2 = 0, model M1 corresponds to the case where β1

is free to vary while β2 = 0, and so on. We can thus define three Bayes factors corresponding to the evidence
in favor of the three alternative models:

BF(1) =

∫
P(~x,~y|~g,~h,θ1)dθ1∫
P(~x,~y|~g,~h,θ0)dθ0

(5)

BF(2) =

∫
P(~x,~y|~g,~h,θ2)dθ2∫
P(~x,~y|~g,~h,θ0)dθ0

(6)

BF(3) =

∫
P(~x,~y|~g,~h,θ3)dθ3∫
P(~x,~y|~g,~h,θ0)dθ0

, (7)

where θ j represents the parameters of model j. To compute these Bayes factors, we use the approximate
Bayes factors from Wakefield [2008]. If we let β̂1 be the maximum likelihood estimate of β1 and

√
V1 be

the standard error in that estimate, then Z1 =
β̂1√
V1

. If the prior on the true effect size is β1 ∼ N(0,W1) we can
write down the Wakefield approximate Bayes factor measuring the evidence that the SNP is associated with
the first phenotype:

WABF1 =
√

1− r1 exp
[

Z2
1

2
r1

]
, (8)
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where r1 = W1
V1+W1

. WABF2 is defined analogously. In all applications, we averaged over Bayes factors
computed with W = 0.01,W = 0.1, and W = 0.5. To now connect these approximate Bayes factors to the
three alternative models for the SNP [Giambartolomei et al., 2014]:

BF(1) =WABF1 (9)

BF(2) =WABF2 (10)

BF(3) =WABF1WABF2, (11)

where BF(3) is a consequence of the fact that the two cohorts are independent. This latter Bayes factor is
equivalent to that derived under the “maximum heterogeneity” model in Wen and Stephens [2014].

We note that in the Wakefield approximate Bayes factor the effect size of a SNP enters only through the
Z-score. As a consequence, if we consider the “reverse” regression model where we swap the genotypes
and phenotypes:

E[gi] = β
′
1xi (12)

E[h j] = β
′
2y j, (13)

then the Bayes factors from this model are identical to the previous model (as long as the ratios r1 and r2

remain constant). In fact it is this latter “reverse” regression that we will use going forward, though it is
simpler to interpret parameters like the prior on the effect size in the traditional parameterization.

2.2 Regional Bayes factor

We now consider a Bayes factor measuring the support for an association in a given genomic region r. To do
this, now consider the matrix Gr of genotypes in the region in the first study (with N1 rows of individuals and
K columns of SNPs) and the matrix Hr of genotypes in the region in the second study (with N2 rows and K
columns). The vectors of phenotypes remain~x and~y. We now want to write down Bayes factors measuring
the evidence in favor of the four alternative models discussed at the beginning of Section 2 relative to the
null model of no associations in the region. For regional model 1 (there is a single SNP casually associated
with the first phenotype and none with the second phenotype):

RBF(1)
r =

K

∑
i=1

π
(1)
i P(Gr,Hr|SNP i is causal,RM1)

P(Gr,Hr|RM0)
(14)

=
K

∑
i=1

π
(1)
i BF(1)

i , (15)

where π
(1)
i is the prior probability that SNP i is the causal one under model 1. Note that the probabilities of

all genotypes at the non-causal sites cancel out because they are identical once we have conditioned on the
genotype at a causal site [Maller et al., 2012].

Analogously,
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RBF(2)
r =

K

∑
i=1

π
(2)
i BF(2)

i (16)

RBF(3)
r =

K

∑
i=1

π
(3)
i BF(3)

i (17)

RBF(4)
r =

K

∑
i=1

K

∑
j=1

π
(1)
i π

(2)
j BF(1)

i BF(2)
j I[i 6= j], (18)

(19)

where I[i 6= j] is an indicator that evaluates to 1 if i and j are different and 0 otherwise, π
(2)
i is the prior

probability that SNP i is the causal SNP under model 2, and π
(3)
i is the prior probability that SNP i is the

causal SNP under model 3. For model 4 (where there are two causal SNPs, one of which only influences
the first phenotype and one of which only influences the second phenotype), we assume that the prior
probabilities that SNP i influences the first or second phenotype are identical to those under model 1 and 2,
respectively. In all applications we set π

(1)
i = π

(2)
i = π

(3)
i = 1

K .

2.3 Likelihood

We now turn to the model for the whole genome. We denote the full matrix of genotypes in the first study as
G and the full matrix of genotypes in the second study as H. We split the genome into M approximately in-
dependent blocks. Under the assumption that all blocks are independent, the probability of all the genotypes
is:

P(G,H|~x,~y) =
M

∏
i=1

P(Gi,Hi|~x,~y) (20)

=
M

∏
i=1

[ 4

∑
j=0

Π jP(Gi,Hi|~x,~y,RM j)

]
, (21)

where Π j is the prior probability of regional model j and RM j is regional model j. These are the probabilities
we would like to learn. We can do so by maximizing the log-likelihood:

l(θ |G,H) =
M

∑
i=1

ln
[

Π0 +
4

∑
j=1

Π jRBF( j)
i

]
, (22)

where θ is the set of parameters in the model (the prior probabilities and all of the parameters that go into
the construction of the Bayes factors). We maximized this likelihood with the approach described in Section
2.5.

2.4 Bayes factors for overlapping cohorts

The above model makes the key assumption that the two phenotypes in question have been measured on
two separate sets of individuals. In practice, the cohorts we will use are often overlapping or partially
overlapping. This causes two problems for the model. First, if the two phenotypes are correlated, we may
overestimate the evidence in favor of regional model 3 (where a single variant influences both phenotypes).
Second, the patterns of linkage disequilibrium in the population can no longer be ignored when considering
the evidence in favor of regional model 4, and we may overestimate the evidence in favor of this model. In
practice, we were most concerned with the first of these; see Section 2.8 for discussion of the second.
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The degree to which we may overestimate the evidence in favor of regional model 3 depends on the
number of overlapping samples in the two studies and the correlation in the phenotypes. We consider the
case where there is a single cohort of individuals. Let the vector of genotypes at the SNP be ~g, and let the
two vectors of phenotypes be~x and~y. Let the phenotypes be bivariate-normally distributed with mean zero,
variance one, and correlation coefficient C. In this case the correlation between the phenotypes is identical
the correlation between the summary statistics.

As before, we first want to calculate the Bayes factors measuring the evidence in favor of the three
alternative models from Section 2.1. We use a multivariate linear regression model:[

xi

yi

]
= gi

[
βx

βy

]
+

[
εxi

εyi

]
, (23)

where βx is the effect of the SNP on phenotype x, βy is the effect of the SNP on phenotype y, and εxi

and εyi are error terms that are multivariate normally distributed with mean zero and covariance matrix Σ

(though in all that follows we assume the effects of any SNP are small, so this residual covariance matrix is
approximated by the covariance matrix of the phenotypes).

To compute the Bayes factors, we use a multivariate extension of the approximate Bayes factor from
Wakefield [2008]. Instead of working directly with the phenotype and genotype vectors, we instead consider
β̂x and β̂y, the estimated effect sizes from each individual regression. We also use Vx and Vy, the respective

variances in the estimates of each regression coefficient, and Zx =
β̂x√
Vx

and Zy =
β̂y√

Vy
. We let:[

β̂x

β̂y

]
∼MV N

([
βx

βy

]
,

[
Vx C

√
VxVy

C
√

VxVy Vy

])
. (24)

We now place a multivariate normal prior on βx and βy. The form we choose is:

[
βx

βy

]
∼MV N

([0

0

]
,

[
Wx C

√
(Vx +Wx)(Vy +Wy)−C

√
VxVy

C
√
(Vx +Wx)(Vy +Wy)−C

√
VxVy Wy

])
. (25)

This prior has the somewhat odd property that it depends to a small extent on the variances of the effect
size estimates (i.e. on the minor allele frequency of the SNP in question), such that rarer SNPs, or those
with a large amount of missing data, have larger prior covariances. The benefit of this prior is that now the
posterior predictive distribution of the estimated effect sizes has a simple form:[

β̂x

β̂y

]
|H1 ∼MV N

([0

0

]
,

[
Vx +Wx C

√
(Vx +Wx)(Vy +Wy)

C
√
(Vx +Wx)(Vy +Wy) Vy +Wy

])
. (26)

The other models are similar. With these assumptions, we can analytically compute the Bayes factors:

BF(1) ≈
√

(1− rx)exp
[

1
2(1−C2)

[Z2
x rx−2CZxZy

(
1−
√

(1− rx)
)
]

]
(27)

BF(2) ≈
√

(1− ry)exp
[

1
2(1−C2)

[Z2
y ry−2CZxZy

(
1−
√

(1− ry)
)
]

]
(28)

BF(3) ≈
√

(1− rx)(1− ry)exp
[

1
2(1−C2)

[Z2
x rx +Z2

y ry−2CZxZy
(
1−
√

(1− rx)(1− ry)
)
]

]
, (29)

where rx =
Wx

Vx+Wx
and ry =

Wy
Vy+Wy

. Note that if the two phenotypes are uncorrelated all three Bayes factors
are identical to those in Section 2.1.
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For all of the pairwise GWAS, we used these Bayes factors instead of those in Section 2.1. We used
C estimated from the summary statistics, as described in Section 1.16. Note that when the cohorts are
only partially overlapping, the C we calculate is a function of the amount of overlap between the cohorts
as well as the correlation in the phenotypes. In principle some knowledge of the true correlation between
two phenotypes could be obtained from external data and incorporated into the prior here, but we have
chosen not to do this, and so as the overlap in the cohorts goes to zero, these Bayes factors tend to the
prior assumption that the two phenotypes are uncorrelated (i.e. the maximum heterogeneity Bayes factor
from Wen and Stephens [2014]). This may be suboptimal in situations where good external information is
available.

2.5 Fitting the model

The natural approach to fitting this model would be to maximize the log-likelihood in Equation 22. However,
in a small subset of cases (generally in pairs of GWAS with small numbers of associated variants), we found
that this maximization was numerically unstable. To fix this, we placed a weak logistic normal prior on the
Π parameters. Specifically, we define hyperparameters:

α0 ∼ N(2,9) (30)

α1 ∼ N(−2,9) (31)

α2 ∼ N(−2,9) (32)

α3 ∼ N(−2,9) (33)

α4 ∼ N(−2,9) (34)

and then define:

Πi =
eαi

∑ j eα j
. (35)

Instead of maximizing the likelihood, we maximized the function:

f (θ) = l(θ)+g(θ), (36)

where θ is the set of five α parameters, l(θ) is the log-likelihood from Equation 22 and g(θ) is the log of the
prior density described above. We maximized this function using the Nelder-Mead algorithm implemented
in the GNU Scientific Library. The estimates of the parameters are maximum a posteriori estimates rather
than maximum likelihood estimates. In practice, this serves to prevent estimates of the Π parameters from
going all the way to zero.

2.6 Comparison to Stephens’s Bayes factors

There are a number of existing approaches to testing for an association between a genetic variants and
multiple traits [Ferreira and Purcell, 2009; Korte et al., 2012; O’Reilly et al., 2012; Stephens, 2013; Zhang
et al., 2014; Zhou and Stephens, 2014]. The most similar approach to ours is that of Stephens [2013]. We
compared the qualitative performance of the two (SNP-level) Bayes factors using simulations. Recall that
there are three possible non-null models for each SNP: either it influences 1) the first trait alone, 2) the
second trait alone, or 3) both traits. The simulation algorithm was as follows:

1. Simulate an effect size: β ∼ N(0,0.09) and an allele frequency f ∼ Beta(2,2).

10



2. Simulate 5,000 genotypes: ~g = [g1,g2, ...g5000], where
gi ∼ Bin(2, f ).

3. Simulate a pair of phenotypes for each simulated genotype according to one of the models described
above: [xi,yi] ∼MV N(~µ,Σ), where µ1 = giβ if simulating from models 1 or 3 (and zero otherwise),
µ2 = giβ if simulating from models 2 or 3 (and zero otherwise) and Σ is a variance/covariance matrix
with the diagonal set to one and the off-diagonal terms set to a correlation C.

4. Calculate the Bayes factors measuring the evidence in favor of each of the three alternative models
using their the Bayes factors as described in the main text or the code in Supplementary Section 3
of Stephens [2013]. We used a prior variance of 0.5, and estimated the correlation in the phenotypes
directly from the simulated phenotypes (rather than setting it to the simulated value).

Results. We considered two correlation coefficients (0 and -0.4) and all three possible alternative models,
for a total of six simulation conditions. In each condition, we repeated the procedure above 1,000 times and
calculated all three possible Bayes factors. For example, in the condition where the “truth” is two uncorre-
lated phenotypes and a genetic variant that influences only the first, we calculated Bayes factors measuring
the support for the true model (model 1: only the first phenotype is associated with the genotype) as well
as the Bayes factor supporting the model 2 (only the second phenotype is associated with the genotype) and
the Bayes factor measuring the support for model 3 (both phenotypes are associated with the genotype).

In Figure 1, we show our Bayes factors and the Stephens Bayes factors for the situation where the two
phenotypes are uncorrelated. The two Bayes factors are similar in all situations. In Figure 2, we show our
Bayes factors and the Stephens Bayes factors for the situation where the two phenotypes are (negatively)
correlated. The two Bayes factors disagree considerably in two situations. Specifically, in simulations
where a genetic variant is associated with only a single phenotype and the test is for association with the
other phenotype, our Bayes factors show little-to-no evidence for association, while the Stephens Bayes
factors sometimes show substantial evidence for association. On reflection, this appears to be due to a
small but apparently important difference in underlying models. Specifically, the Stephens [2013] model
is equivalent for testing for independence between the genotype and the second phenotype conditional on
the first phenotype, while we are testing for unconditional independence between the genotype and the
phenotype.

2.7 Simulations

We wanted to evaluate the performance of the hierarchical model in moderately realistic simulations. To
do this, we simulated GWAS using haplotypes from the HapMap Project [Frazer et al., 2007]. We prede-
fined 111 genomic regions to simulate data from, and assigned two genetic variants in each region as the
potentially causal variants (see Figure 1 in the main text). Each simulation then had the following steps:

1. Simulate 10,000 haplotypes in the 111 genomic regions using hapgen2 [Su et al., 2011] and reference
haplotypes from the HapMap Project.

2. Assign each region to one of the five models RM[0−4] randomly (in general, we evenly distributed the
regions to all five models).

3. Sum the number of causal alleles for both phenotypes for each individual (combining two simulated
haplotypes to make an individual).

4. Simulate phenotypes for each individual as MV N(µ,Σ) (where µ and Σ were set as described below)
and quantile normalize the phenotypes.
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5. Run linear regression of each SNP against both phenotypes (in simulations of separate cohorts, we
used half the individuals for the association study of the first phenotype, and half for the association
study of the second).

6. Run the model on the summary statistics generated from these linear regressions. For all runs, we
used a prior variance on the effects sizes of 0.5.

2.7.1 Simulated traits

For uncorrelated traits, we simulated the phenotypes of each individual as independent normally distributed
variables with µ = 0.3ni, where ni is the counts of causal alleles for phenotype i, and σ2 = 0.1. For sim-
ulations of correlated traits, we used the same structure, except that we set the covariance between the two
phenotypes as 0.1∗ρ , where ρ was set according to the simulation.

2.7.2 Results

We simulated four situations: uncorrelated traits (both overlapping cohorts and non-overlapping cohorts)
and correlated traits (both overlapping cohorts and non-overlapping cohorts) with a correlation coefficient
of 0.3. Shown in Supplementary Figure 3 are the parameter estimates obtained in the simulations. For
comparison, we also used a simple P-value model where a region was called a “hit” for each phenotype
if a SNP had a P-value of less than 5× 10−8 for the phenotype. If a single variant had a P-value less than
5×10−8 for one phenotype and a P-value less than 5×10−5 for the other phenotype, we called this as fitting
model 3 (of co-localized signals).

We see that in the case of separate cohorts (Supplementary Figure 3A,C), the hierarchical model gets
close to the truly simulated proportions, while the P-value method dramatically overestimates Π0. There
is a slight overestimation of Π3, which we attribute the fact that the evidence against the null for variants
that truly influence both phenotypes is stronger than for variants that influence only a single trait. In the
case of perfectly overlapping cohorts (Supplementary Figure 3B,D), the hierarchical model additionally
overestimates Π4, likely for the reason discussed below. In this case the P-value method performs well,
though we attribute this to the fact that we have simulated a GWAS where all variants have the same effect
size and the sample size is large enough to have excellent power to detect this effect size. In real GWAS,
this is unlikely to be the case.

2.8 Accounting for linkage disequilibrium in overlapping cohorts

Up to this point, we have ignored linkage disequilibrium when fitting the hierarchical model. Here we de-
scribe an approach that accounts for linkage disequilibrium as well. This is only relevant for the calculation
of the Bayes factor measuring the support for regional model 4, where there are two causal variants in a
region, one of which influences the first phenotype and one of which influences the second phenotype. This
section is included for completeness, but apart from the explorations described in Section 2.8.3 we did not
use this modification as we did not find it useful in practice.

2.8.1 Conditional Bayes factors.

In this situation, it is necessary to approximate a conditional regression analysis–that is, to estimate the effect
size of one genetic variant conditional on the estimated effect size of another genetic variant. We redefine
some notation for simplicity. Consider a single phenotype and two genetic variants. Let ~y be a vector of
(standard normally-distributed) phenotypes, ~g1 be the mean-centered vector of genotypes at SNP 1, ~g2 be
the mean-centered vector of genotypes at SNP 2, β̂1 be the (non-conditional) estimate of the effect of SNP
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1 on the phenotype from a simple linear regression of the phenotype on the genotypes at SNP 1, and β̂2 be
the analogous estimate for SNP 2. We consider the conditional regression model where:

yi− β̂2gi2 = β
′
1gi1 + ε, (37)

where β ′1 is the conditional estimate of the effect size of SNP 1 and i indexes individuals. The least squares
estimate of this effect size is:

β̂
′
1 =

∑
i
(yi− β̂2gi2)gi1

∑
i

g2
i1

(38)

β̂
′
1 = β̂1−

Cov(g1,g2)

Var(g1)
β̂2, (39)

In order to compute our approximate Bayes factors, we need the variance in this estimate. If we let R =
Cov(g1,g2)

Var(g1)
:

Var(β̂ ′1) =Var(β̂1−Rβ̂2) (40)

=Var(β̂1)+Var(Rβ̂2)−2Cov(β̂1,Rβ̂2). (41)

If we assume that there is no error in our estimate of R, this reduces to:

Var(β̂ ′1)≈Var(β̂1)−R2Var(β̂2), (42)

which is equivalent to Equation 20 from Yang et al. [2012] (assuming effect sizes are small, such that the

residual variance is equivalent to the phenotypic variance). We can then define Z′ = β̂ ′1√
Var(β̂ ′1)

and use any of

the approximate Bayes factors as defined previously.

Propagating error in R. It has been suggested that if R is estimated from around 2,000 individuals then it
can be treated as a scalar rather than a random variable [Yang et al., 2012]. In general, however, we do not
have access to the genotype data underlying a study, so we will estimate R from a separate panel of publicly-
available haplotypes from individuals of the same ancestry as the individuals in the association study. These
panels generally have hundreds rather than thousands of individuals, so we need to propagate the error in R.
Under the null, the second term in Equation 41 is:

Var(Rβ̂2) = E[R]2Var(β̂2)+2Var(β̂2)Var(R), (43)

and the third is:

Cov(β̂1,Rβ̂2) = E[Rβ̂1β̂2] (44)

= RCov(β̂1, β̂2) (45)

= R2Var(β̂2), (46)

so substituting and simplifying we get:

Var(β̂ ′1) =Var(β̂1)+Var(β̂2)[2Var(R)−R2]. (47)
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Finally, we need to approximate the variance in R. We assume this is estimated from a reference panel
consisting of 2M phased haplotypes from M diploid individuals. Let the count of haplotypes carrying
the non-reference alleles at both sites be c11, the count of haplotypes carrying the reference allele at the
first site and the non-reference allele at the second site be c10, and so on for c01 and c00. We define the
analogous frequencies f11, f10, f01, and f00. With this notation, R̂ = f11−( f10+ f11)( f01+ f11)

( f10+ f11)(1−( f10+ f11))
. Using the delta

method [Agresti, 2002]:

Var(R̂)≈ ∆Σ∆
T , (48)

where ∆ is the vector of partial derivatives of R̂ with respect to f11, f10, and f01, and Σ is the covariance
matrix of these frequencies. Explicitly, ∆ is:

∂ R̂
∂ f11

=
f10(1− f1.)

2− f01 f 2
1.

f 2
1.(1− f1.)2 (49)

∂ R̂
∂ f10

=
− f01 f 2

1.− f11(1− f1.)
2

f 2
1.(1− f1.)2 (50)

∂ R̂
∂ f01

=
1

f1.−1
, (51)

where f1. = f11 + f10. Additionally, Σ is:

Cov( fi, f j) =

{
fi(1− fi)

2M if i = j
− fi f j
2M if i 6= j

. (52)

We can thus calculate Var(R̂), and plug this into Equation 47 to estimate the variance in the estimate of the
conditional effect size.

Multivariate conditional Bayes factors. We note that the above calculation are for a single phenotype.
For two phenotypes, we simply perform the above procedure for each individually. This gives a corrected
Z-score for each of the two phenotypes, which can then be plugged into any of the calculations for our
approximate Bayes factors.

2.8.2 Regional Bayes factors

We can now write down the Bayes factors measuring the support for an association in a given genomic
region r. As in the situation where the two traits have been measured in separate cohorts,

RBF(1)
r =

K

∑
i=1

π
(1)
i BF(1)

i (53)

RBF(2)
r =

K

∑
i=1

π
(2)
i BF(2)

i (54)

RBF(3)
r =

K

∑
i=1

π
(3)
i BF(3)

i (55)

RBF(4)
r =

K

∑
i=1

K

∑
j=1

π
(1)
i π

(2)
j BF(1)

i BF ′(2)j I[i 6= j], (56)

(57)
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where I[i 6= j] is an indicator that evaluates to 1 if i and j are different and 0 otherwise, π
(1)
i is the prior

probability that SNP i is the causal SNP under model 1, π
(2)
i is the prior probability that SNP i is the

causal SNP under model 2, and π
(3)
i is the prior probability that SNP i is the causal SNP under model 3.

Additionally, BF ′(2)j is the Bayes factor at SNP j conditional on the observed effects at SNP i, calculated
using the procedure in Section 2.8.1. Note the only difference to the method that does not account for LD is
the calculation of RBF(4)

r .

2.8.3 Application

We applied this method to several genome-wide association studies that we know were performed on the
same cohorts. We calculated Ri j between all pairs of SNPs using the haplotypes from the European-descent

individuals in the 1000 Genomes Project as V̂i j

V̂ii
, where both of these were estimated using the shrinkage

estimator of Wen and Stephens [2010] and the recombination rate estimates from the HapMap Project as
in Berisa and Pickrell [2015]. We ran the model in three modes: 1) assuming the cohorts were completely
separate, 2) accounting for the correlation in the summary statistics under the null but not linkage disequi-
librium, and 3) accounting for both the correlation in the phenotypes and linkage disequilibrium. Shown
in Supplementary Figure 5 are the parameter estimates in these three situations for four pairs of GWAS. In
general, correcting for LD made little difference in practice. For all of the main analyses, we only corrected
for the correlation in summary statistics under the null.

3 Causal inference

The observation that a genetic variant influences two traits can be interpreted in the “Mendelian random-
ization” framework as evidence that one trait causally influences the other. However, using this framework
requires the strong assumption that the variant does not influence the two traits via independent mechanisms.

Our goal was to develop a robust method for measuring the evidence in favor of a causal relationship
between two traits using data from many genetic associations, while recognizing that strong conclusions are
likely impossible in this setting. Our aim was not to estimate the magnitude of a causal effect (should one
exist), but rather to simply determine if such an effect exists.

Our motivating example comes from LDL cholesterol and heart disease risk–if we identify variants that
influence LDL levels, these variants have correlated effects on heart disease risk (Figure 5 in the main text).
However, if we identify genetic variants that influence heart disease, these variants do not have correlated
effects on LDL levels (Figure 5 in the main text). The intuition is as follows: if a trait X causally influences
trait Y , then to a first approximation every genetic variant that influences trait X should also influence trait
Y , and the effect sizes of these variants on the two traits should be correlated. The reverse, however, is not
true: genetic variants that influence trait Y do not necessarily influence trait X , since Y can be influenced by
mechanisms independent of X . (Assume that X is one of a large number of factors that causally influence
Y , such that most of the variants that influence Y do not act through X).

To scan through all pairs of traits, we aimed to formulate this intuition in a manner that allows for
automation. Related work has been done on Mendelian randomization with multiple genetic variants
[Davey Smith and Hemani, 2014; Do et al., 2013; Evans et al., 2013] and “reciprocal” Mendelian ran-
domization [Timpson et al., 2011]. We assume we have identified a set of NX genetic variants that influence
X (without using information about Y ). Assume we have also identified a set of NY genetic variants that
influence Y (without using information about X). Let ~βXX be the vector of effect sizes on trait X for the
set of variants ascertained through the association study of X , and ~βXY be the vector of the effect sizes of
these variants on trait Y . Define ~βYY and ~βY X analogously. Now let ρ̂X be the rank correlation between ~βXX

and ~βXY , and let ρ̂Y be the rank correlation between ~βYY and ~βY X . Using Fisher’s Z-transformation, we can
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approximate the sampling distributions of ρ̂X and ρ̂Y . If we let ẐX = arctanh(ρ̂X):

ẐX ∼ N
(

ZX ,
1

NX −3

)
(58)

ẐY ∼ N
(

ZY ,
1

NY −3

)
. (59)

We can thus define an approximate likelihood for the two correlation coefficients:

L(ZX ,ZY ; ẐX , ẐY ,NX ,NY ) = N
(

ẐX ;ZX ,
1

NX −3

)
N
(

ẐY ;ZY ,
1

NY −3

)
, (60)

where N(x; µ,σ2) is the density of a normal distribution with mean µ and variance σ2 evaluated at x.
Now we define the models we would like to compare:

1. M1: if trait X causes Y , then we estimate ZX and set ZY = 0.

2. M2: If trait Y causes X , then we estimate ZY and set ZX = 0.

3. M3: If there are no relationships between the traits, then ZX = ZY = 0.

4. M4: If the correlation does not depend on how the variants were ascertained, ZX = ZY .

The first two models on this list we think of as causal models, by the line of reasoning outlined at the
beginning of this section. The third model we obviously interpret as a non-causal model. The fourth we
also interpret as non-causal, though this perhaps merits some discussion (see below). We fit each model by
maximizing the corresponding approximate likelihood.

To compare the models, we calculate the Akaike information criterion (AIC) for each, where the num-
bers of parameters is 1, 1, 0, and 1, respectively, for the four models above. We then choose the smallest AIC
from the two causal models (AICcausal) and the smallest AIC from the two non-causal models (AICnoncausal).
We then calculate the relative likelihood of these two models:

r = exp
(

AICcausal−AICnoncausal

2

)
. (61)

This is the relative likelihood of the best non-causal model compared to the best causal model. In Figure
5 in the main text, we show the four pairs of traits where this ratio is less than 0.01, and in Supplementary
Figure 12, we show 10 additional pairs of traits where this ratio is less than 0.05. As we can see visually, this
model successfully identifies patterns that look similar to our motivating example of LDL and heart disease.

A key caveat in interpretation of this method is that we may not have measured the truly causal pheno-
type, but rather some proxy for it. For example, if it is not BMI per se that causally influences risk of type
2 diabetes, but rather some other measure of adiposity that is highly correlated to BMI (and shares the same
underlying genetic basis), then we have no way of detecting this. We suspect that more detailed phenotyping
will identify “clusters” of highly correlated traits that will be difficult to disentangle.

3.1 Implications of looking explicitly for asymmetry.

We have set up this model in the context where a causal trait is one of many factors that influences a
downstream trait. This induces the asymmetry we try to detect. However, it is possible that the “causal”
trait is the major factor that influences the “caused” trait. For example, consider type 2 diabetes and fasting
glucose levels. Clearly any factor that increases fasting glucose increases risk of type 2 diabetes (and vice
versa), just by virtue of the definition of the disease. This type of causal relationship will be missed by
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this approach. On the other hand, consider the two measures of bone mineral density. Any factor that
increases one will also almost certainly increase the other, because the two phenotypes are closely related at
a molecular level. We would not consider this a causal relationship between the traits, but rather that the two
traits are measurements of a single underlying variable (namely overall bone density). We prefer to miss
causal relationships of the first kind in order to avoid the interpretive difficulties of the second case.

3.2 Simulations

To test the behavior of this method, we performed simulations. Each simulation was set up as follows: we
simulate two sets of bivariate normally distributed points, then use the procedure described above to detect
an asymmetry in the Spearman correlation coefficients in the two sets. Note that this does not simulate all
aspects of a genetic association study, rather just the estimated effect sizes.

3.2.1 Simulations under the null.

To test the distribution of our test statistic under the null model, we performed simulations of a situation
with no causal relationship between two traits. Specifically, we simulated N1 bivariate normally distributed
random variables X1 and X2, and then N2 bivariate normally distributed random variables Y1 and Y2. The
means of all simulated random variables were set to zero and the variances to 1. We then applied the method
from the main text to obtain the relative likelihood in favor of a “non-causal” model versus a “causal” model.
In Supplementary Figure 15, we show the distribution of this ratio for different values of N1 and N2. Note
that when N1 is small (for example, five identified variants) the normal approximation breaks down; this is
reflected in a number of simulations where the test statistic is unreasonably small (that is, the support for
causality is unreasonably large).

3.2.2 Power simulations.

To test the power of our approach, we then performed simulations under a model that approximates the
situation where one trait is causally upstream of another. Specifically, we simulated N1 bivariate normally
distributed random variables X1 and X2 with means of zero, variances of one, and correlation coefficient C.
We then simulated N2 bivariate normally distributed random variables Y1 and Y2 with means zero, variances
one, and correlation coefficient zero. This approximates the asymmetric situation we expect if trait 1 causes
trait 2. We then applied the method from the main text to obtain the relative likelihood of a “non-causal”
model versus a “causal” model, and calculated the power as the fraction of simulations where this test
statistic was less than 0.01. Shown in Supplementary Figure 14 is this estimate of the power for different
numbers of variants and correlation coefficients. It is important to note that the correlation we estimate
(either in the simulations or in the analysis of real data) is not corrected for sampling error in the effect sizes,
and so will be biased downwards from the “true” genetic correlation.

3.3 Expanded analysis of putative causally-related traits

As noted in the main text, in our initial scan for putative causally-related traits, we identified five pairs
of traits. One of these was a putative causal relationship between risk of coronary artery disease and risk
of rheumatoid arthritis (Supplementary Figure 18). In the data used, variants that increase risk of CAD
tend to decrease risk of RA (Supplementary Figure 18A), while variants that influence RA appear to have
no correlated effects on CAD (Supplementary Figure 18B). This echoes the patterns seem for the other
phenotypes in Figure 5 in the main text.

However, three issues caused us to worry this correlation might be spurious. First, the number of variants
identified in the GWAS of CAD was small–eleven, compared to 30 for BMI, 30 for hypothyroidism, and
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41 for LDL cholesterol. Second, there appears to be no overall genome-wide genetic correlation between
risk of CAD and risk of RA [Bulik-Sullivan et al., 2015]. Third, this observed correlation is in the opposite
direction to the known epidemiological correlation where individuals with rheumatoid arthritis are at higher
risk of coronary artery disease (e.g. Maradit-Kremers et al. [2005]).

We thus identified an expanded set of loci that influence CAD risk using a larger GWAS performed
using a targeted genotyping array [CARDIoGRAMplusC4D Consortium et al., 2013]. We downloaded the
79,129 summary statistics from the CARDIoGRAMplusC4D Metabochip study [CARDIoGRAMplusC4D
Consortium et al., 2013] from http://www.cardiogramplusc4d.org/downloads/, and ran fgwas as
on the original GWAS (in this case without performing any imputation). This analysis identified 70 loci
associated to CAD risk at a false discovery rate of 10%. We then compared the effect sizes of these variants
on CAD risk with their effect sizes on RA risk (Supplementary Figure 18C). The negative correlation from
Supplementary Figure 18A (ρ =−0.91,P = 5.6×10−5) is no longer apparent in Supplementary Figure 18C
(ρ =−0.21,P = 0.07). We conclude that this apparent causal relationship between risk of CAD and risk of
RA was likely a false positive driven by small numbers of variants associated with CAD.

We next wished to test the robustness of the other inferred causal relationships. To do this, we used
the fact that we discarded variants typed on the Metabochip from Locke et al. [2015] for our main analysis.
This was done to allow for imputation at the level of summary statistics, but resulted in a significant loss
of power to identify variants since many individuals were typed using only this genotyping array. We thus
re-processed the data from Locke et al. [2015] as described in the main text, except that we 1) did not
perform imputation, but 2) included variants typed on the Metabochip. This increased the number of loci
identified at a false discovery rate of 10% from 30 to 75. We plotted the effects of these variants on BMI
and triglyceride levels (Supplementary Figure 17A), and on BMI and type 2 diabetes (Supplementary Figure
17A). The evidence for a correlation in the effect sizes of the set of 30 variants on BMI and triglyceride levels
(ρ = 0.74,P = 5.9×10−6) remained strong in the set of 75 loci (ρ = 0.59,P = 7.1×10−8). Likewise, the
evidence for a correlation in the effect sizes of the set of 30 variants on BMI and risk of type 2 diabetes
(ρ = 0.78,P = 1.6×10−6) remained strong in the set of 75 loci (ρ = 0.64,P = 6.2×10−9).

Interestingly, in both cases a single locus appeared as an outlier–in the case of BMI and triglycerides, a
variant near APOE was associated with decreased BMI but increased levels of triglycerides (Supplementary
Figure 17A), while in the case of BMI and type 2 diabetes, a variant near TCF7L2 was associated with
decreased BMI but highly increased risk of type 2 diabetes (Supplementary Figure 17A, see also Helgason
et al. [2007]). This suggests that both the APOE locus and the TCF7L2 locus may harbor variants that
influence the downstream phenotypes (triglycerides and type 2 diabetes risk, respectively) through mecha-
nisms that are independent of BMI. More generally, variants near TCF7L2 have been used in a number of
Mendelian randomization studies of type 2 diabetes (e.g. Pfister et al. [2011]; Song et al. [2012]; Villareal
et al. [2010]); if this locus affects multiple phenotypes via different molecular mechanisms then it may not
be an appropriate “instrument” for this type of analysis.
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Introduction(
This!document!describes!the!methods!used!by!23andMe!to!conduct!GWAS!in!the!23andMe!
participant!cohort.!

Methods(
All!23andMe!participants!included!in!the!analyses!provided!informed!consent!to!take!part!
in!this!research!and!answered!surveys!online!under!a!human!subjects!protocol!reviewed!
and!approved!by!Ethical!&!Independent!Review!Services,!an!AAHRPP2accredited!
institutional!review!board!(http://www.eandireview.com).!

National!Genetics!Institute!(NGI),!a!CLIA!licensed!clinical!laboratory!and!a!subsidiary!of!
Laboratory!Corporation!of!America!extracted!DNA!from!saliva!samples!and!preformed!
genotyping!for!23andMe.!Genotyping!was!conducted!on!one!of!four!genotyping!platforms.!
The!V1!and!V2!platforms!were!variants!of!the!Illumina!HumanHap550+!BeadChip,!
including!about!25,000!custom!SNPs!selected!by!23andMe,!with!a!total!of!about!560,000!
SNPs.!The!V3!platform!was!based!on!the!Illumina!OmniExpress+!BeadChip,!with!custom!
content!to!improve!the!overlap!with!our!V2!array,!with!a!total!of!about!950,000!SNPs.!The!
V4!platform!in!current!use!is!a!fully!custom!array,!including!a!lower!redundancy!subset!of!
V2!and!V3!SNPs!with!additional!coverage!of!lower2frequency!coding!variation,!and!about!
570,000!SNPs.!Samples!that!failed!to!reach!98.5%!call!rate!were!re2analyzed.!23andMe!
participants!whose!analyses!failed!repeatedly!were!re2contacted!by!23andMe!customer!
service!to!provide!additional!samples,!as!is!done!for!all!23andMe!customers.!

For!our!standard!GWAS,!we!restricted!participants!to!a!set!of!individuals!who!have!>97%!
European!ancestry,!as!determined!through!an!analysis!of!local!ancestry1.!Briefly,!our!
algorithm!first!partitioned!phased!genomic!data!into!short!windows!of!about!100!SNPs.!
Within!each!window,!we!used!a!support!vector!machine!(SVM)!to!classify!individual!
haplotypes!into!one!of!31!reference!populations.!The!SVM!classifications!were!then!fed!into!
a!hidden!Markov!model!(HMM)!that!accounted!for!switch!errors!and!incorrect!
assignments,!and!gave!probabilities!for!each!reference!population!in!each!window.!Finally,!
we!used!simulated!admixed!individuals!to!recalibrate!the!HMM!probabilities!so!that!the!
reported!assignments!are!consistent!with!the!simulated!admixture!proportions.!The!
reference!population!data!was!derived!from!public!datasets!(the!Human!Genome!Diversity!
Project,!HapMap,!and!1000!Genomes),!as!well!as!23andMe!participants!who!have!reported!
having!four!grandparents!from!the!same!country.!

!A!maximal!set!of!unrelated!individuals!was!chosen!for!each!analysis!using!a!segmental!
identity2by2descent!(IBD)!estimation!algorithm2.!Individuals!were!defined!as!related!if!they!
shared!more!than!700!cM!IBD,!including!regions!where!the!two!individuals!share!either!
one!or!both!genomic!segments!identical2by2descent.!This!level!of!relatedness!(roughly!20%!
of!the!genome)!corresponds!approximately!to!the!minimal!expected!sharing!between!first!
cousins!in!an!outbred!population.!
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Participant!genotype!data!were!imputed!against!the!March!2012!“v3”!release!of!1000!
Genomes!reference!haplotypes3.!We!phased!and!imputed!data!for!each!genotyping!
platform!separately.!First,!we!used!Beagle4!(version!3.3.1)!to!phase!batches!of!800029000!
individuals!across!chromosomal!segments!of!no!more!than!10,000!genotyped!SNPs,!with!
overlaps!of!200!SNPs.!We!excluded!SNPs!with!Hardy2Weinberg!equilibrium!P<10−20,!call!
rate!<!95%,!or!with!large!allele!frequency!discrepancies!compared!to!European!1000!
Genomes!reference!data.!Frequency!discrepancies!were!identified!by!computing!a!2x2!
table!of!allele!counts!for!European!1000!Genomes!samples!and!2000!randomly!sampled!
23andMe!participants!with!European!ancestry,!and!identifying!SNPs!with!a!chi!squared!
P<10−15.!We!imputed!each!phased!segment!against!all2ethnicity!1000!Genomes!haplotypes!
(excluding!monomorphic!and!singleton!sites)!using!Minimac25,!using!5!rounds!and!200!
states!for!parameter!estimation.!

For!the!non2pseudoautosomal!region!of!the!X!chromosome,!males!and!females!were!
phased!together!in!segments,!treating!the!males!as!already!phased;!the!pseudoautosomal!
regions!were!phased!separately.!We!then!imputed!males!and!females!together!using!
minimac,!as!with!the!autosomes,!treating!males!as!homozygous!pseudo2diploids!for!the!
non2pseudoautosomal!region.!

For!case!control!comparisons,!we!computed!association!test!results!by!logistic!regression!
assuming!additive!allelic!effects.!For!tests!using!imputed!data,!we!used!the!imputed!
dosages!rather!than!best2guess!genotypes.!We!typically!include!covariates!for!age,!gender,!
and!the!top!five!principal!components!to!account!for!residual!population!structure.!The!
association!test!P!value!we!report!was!computed!using!a!likelihood!ratio!test,!which!in!our!
experience!is!better!behaved!than!a!Wald!test!on!the!regression!coefficient.!For!
quantitative!traits,!association!tests!were!performed!by!linear!regression.!Results!for!the!X!
chromosome!were!computed!similarly,!with!male!genotypes!coded!as!if!they!were!
homozygous!diploid!for!the!observed!allele.!

HLA!allele!dosages!have!been!imputed!from!SNP!genotype!data!using!HIBAG6.!We!imputed!
alleles!for!HLA2A,!B,!C,!DPB1,!DQA1,!DQB1,!and!DRB1!loci!at!four2digit!resolution.!To!test!
associations!between!HLA!allele!dosages!and!phenotypes,!we!performed!logistic!or!linear!
regression!using!the!same!set!of!covariates!used!in!the!SNP!based!GWAS!for!that!
phenotype.!We!performed!separate!association!tests!for!each!imputed!allele.!

Association(Test(Results(
For!reporting!associations!of!SNPs,!when!choosing!between!imputed!and!genotyped!GWAS!
results,!if!either!the!imputed!test!passes!quality!control,!or!a!genotyped!test!is!unavailable,!
we!report!the!imputed!result;!otherwise,!we!report!the!genotyped!result.!

For!quality!control!of!genotyped!GWAS!results,!we!flagged!SNPs!that!were!only!genotyped!
on!our!“V1”!platform!due!to!small!sample!size,!and!SNPs!on!chrM!or!chrY!because!many!of!
these!are!not!currently!called!reliably.!Using!trio!data,!we!flagged!SNPs!that!failed!a!test!for!
parent2offspring!transmission;!specifically,!we!regressed!the!child’s!allele!count!against!the!
mean!parental!allele!count!and!flagged!SNPs!with!fitted!β<0.6!and!P<10−20!for!a!test!of!β<1.!
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We!flagged!SNPs!with!a!Hardy2Weinberg!P<10−20!in!Europeans;!or!a!call!rate!of!<90%.!We!
also!tested!genotyped!SNPs!for!genotype!date!effects,!and!flagged!SNPs!with!P<10−50!by!
ANOVA!of!SNP!genotypes!against!a!factor!dividing!genotyping!date!into!20!roughly!equal2
sized!buckets.!

For!imputed!GWAS!results,!we!flagged!SNPs!with!avg.rsq<0.5!or!min.rsq<0.3!in!any!
imputation!batch,!as!well!as!SNPs!that!had!strong!evidence!of!an!imputation!batch!effect.!
The!batch!effect!test!is!an!F!test!from!an!ANOVA!of!the!SNP!dosages!against!a!factor!
representing!imputation!batch;!we!flagged!results!with!P<10−50.!Prior!to!GWAS,!we!
identified,!for!each!SNP,!the!largest!subset!of!the!data!passing!these!criteria,!based!on!their!
original!genotyping!platform!22!either!v2+v3+v4,!v3+v4,!v3,!or!v4!only!22!and!computed!
association!test!results!for!whatever!was!the!largest!passing!set.!As!a!result,!there!are!no!
imputed!results!for!SNPs!that!fail!these!filters.!!

Across!all!results,!we!flagged!logistic!regression!results!that!did!not!converge!due!to!
complete!separation,!identified!by!abs(effect)>10!or!stderr>10!on!the!log!odds!scale.!We!
have!also!flagged!linear!regression!results!for!SNPs!with!MAF!<!0.1%!because!tests!of!low!
frequency!variants!can!be!sensitive!to!violations!of!the!regression!assumption!of!normally!
distributed!residuals.!

GWAS(Reports(
The!GWAS!reports!include!a!detailed!description!of!how!each!phenotype!was!constructed!
from!23andMe!participant!responses,!and!a!summary!of!findings!from!the!GWAS.!Results!
reported!have!been!adjusted!for!genomic!control7.!The!genomic!control!procedure!adjusts!
test!statistics!and!standard!errors!of!effect!sizes!to!compensate!for!variance!inflation!due!to!
residual!population!stratification!that!has!not!been!effectively!controlled!through!use!of!
principal!components!in!the!regression!models.!The!genomic!control!inflation!factor!used!is!
included!in!the!reports,!and!is!computed!from!the!median!P!value!for!results!that!passed!
QC.!

Phenotype(Statistics(
These!tables!show!participant!demographics!for!this!phenotype,!computed!across!all!
23andMe!customers!who!have!consented!to!participate!in!research,!and!across!just!the!
European,!unrelated!participants!included!in!the!GWAS.!

Null(model(with(covariates(
This!section!shows!model!fitting!results!for!covariates!included!in!the!GWAS!–!normally,!
age,!gender,!and!the!top!five!principal!components.!The!form!of!the!table!depends!on!the!
model!type.!The!table!will!include!effect!sizes!and!standard!errors,!Wald!test!statistics!for!
the!null!hypothesis!that!a!term’s!effect!size!is!0!(z2value)!and!the!corresponding!p2value!
(Pr(>|z|)),!and!for!logistic!regression,!likelihood!ratio!test!(LRT)!results!for!dropping!this!
term!from!the!model!and!the!corresponding!p2value!(Pr(>Chi)).!
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SNPBlevel(QC(information(
This!section!includes!several!tables!showing!filters!that!were!applied!to!the!association!test!
results!as!described!above!to!create!a!cleaned!result!set.!For!genotyped!data,!these!include!
filters!on!sample!size!or!reliability!(V12only,!chrM,!chrY),!parent2offspring!test,!minor!allele!
frequency!(MAF),!Hardy!Weinberg!equilibrium!(HWE),!genotype!call!rate!(gt.rate),!and!
batch!effects.!For!imputed!data,!these!include!filters!on!imputation!quality!and!imputation!
batch!effects.!A!final!table!shows!counts!of!genotyped!and!imputed!SNP!association!results!
that!passed!the!filters,!and!how!these!were!merged!together.!

Manhattan(Plot(
The!Manhattan!plot!depicts!the!distribution!of!association!test!statistics!versus!genomic!
position,!with!chromosomes!1!to!22,!X,!and!Y!arranged!along!the!X!axis.!The!Y!axis!
represents!log2scaled!P!values.!Positions!with!P<5×10−8!(a!score!of!about!7.3)!are!shown!in!
red.!If!the!results!include!loci!with!P<10−25!then!the!vertical!scale!is!adjusted!nonlinearly!to!
preserve!detail!for!signals!near!the!genome2wide!threshold.!Up!to!25!loci!with!smallest!
P<10−6!are!labeled!with!the!name!of!the!nearest!gene.!A!“good”!Manhattan!plot!should!
show!towers!of!SNPs!with!small!P!values!supporting!most!signals!that!pass!the!genome!
wide!threshold.!

QBQ(Plot(
The!Q2Q!plot!depicts!observed!versus!expected!quantiles!for!the!GWAS!P!values,!where!the!
expected!distribution!of!P!values!is!uniform!under!the!null!hypothesis,!plotted!on!a!log!
scale.!A!solid!red!line!is!shown!with!a!slope!of!1,!and!dashed!red!lines!represent!a!95%!
confidence!envelope!under!the!assumption!that!the!test!results!are!independent.!A!“good”!
Q2Q!plot!follows!the!null!distribution!for!larger!P!values!(P>0.01)!then!diverges!from!the!
null!distribution!for!small!P!values.!The!test!statistics!in!the!Q2Q!plot!have!already!been!
adjusted!using!genomic!control.!

Index(SNPs(for(Strongest(Associations(
The!table!of!index!SNPs!shows!information!for!the!most2associated!SNP!in!each!associated!
region,!for!at!least!5!and!at!most!50!regions!for!each!phenotype.!We!define!regions!by!
identifying!SNPs!with!P<10−5,!then!grouping!these!into!intervals!separated!by!gaps!of!at!
least!250!kb,!and!choosing!the!SNP!with!smallest!P!within!each!interval.!The!source!(src)!of!
each!SNP,!genotyped!(G)!or!imputated!(I),!is!indicated.!

Column'name' Definition'
assay.name' dbSNP!build!137!rsID!when!available;!a!small!number!of!SNPs!

without!good!matches!in!dbSNP!have!23andMe!names!like!‘i12345’.!!
scaffold' Chromosome!name,!NCBI!Build!37!
position' Chromosomal!position,!NCBI!Build!37!
alleles' The!two!SNP!alleles,!A/B,!in!alphabetical!order!
src' Source!of!SNP!–!genotyped!(G)!or!imputed!(I)!

!
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The!gene.context!field!is!constructed!using!the!HG19!release!of!the!UCSC!Known!Genes!
tables,!and!has!the!following!interpretations:!

Format'of'gene.context' Interpretation'
[Gene1,Gene2,…]' The!SNP!is!contained!within!the!transcripts!of!the!specified!

gene(s)!
Gene1−−[]−−−Gene2' The!SNP!is!flanked!by!Gene1!and!Gene2.!!Dashes!indicate!

distance:!‘’!=!<1kb,!‘−‘!=!<10kb,!‘−−‘!=!<100kb,!‘−−−‘!=!<1000kb!
Gene1−−[]' The!SNP!is!flanked!by!Gene1!on!the!left,!but!there!is!no!gene!

within!1000kb!on!the!right.!
[]−−−Gene2' The!SNP!is!flanked!by!Gene2!on!the!right,!but!there!is!no!gene!

within!1000kb!on!the!left!
[]' There!are!no!genes!within!1000kb!of!the!SNP!

!

Quality(Statistics(for(Index(SNPs(
These!quality!statistics!describe!the!index!SNPs!in!the!set!of!all!23andMe!participants!with!
European!ancestry!22!not!just!the!ones!included!in!this!GWAS.!Columns!indicate!which!
23andMe!genotyping!array(s)!include!each!variant.!For!genotyped!SNPs,!the!statistics!
include!call!rate,!Hardy!Weinberg!P!values,!and!allele!frequency.!For!imputed!SNPs,!the!
statistics!include!average!and!minimum!r2!across!imputation!batches,!and!a!P!value!for!a!
dosage!dependence!on!batch.!!

Column'name' Definition'
is.v1,'is.v2,'is.v3,'
is.v4'

Flags!indicating!whether!this!SNP!is!present!on!the!23andMe!V1,!
V2,!V3,!and/or!V4!genotyping!platforms!(0!=!no,!1!=!yes)!

freq.b' Average!dosages!of!the!B!allele!in!Europeans!!
avg.rsqr' The!average!imputation!r2!across!all!batches!of!imputation!results,!

a!measure!of!overall!imputation!quality!
min.rsqr' The!minimum!imputation!r2!in!any!one!batch!of!imputation!results,!

a!measure!of!consistency!of!imputation!quality!
p.batch' A!test!for!an!imputation!batch!effect:!An!F!test!from!an!ANOVA!of!

the!SNP!genotypes!against!a!factor!representing!imputation!batch!
qc.mask' The!set!of!platforms!for!which!this!variant!was!successfully!

imputed!(joint!avg.rsqr>0.5,!min.rsqr>0.3,!and!p.batch>1e250):!one!
of!‘v2v3v4’,!‘v3v4’,!‘v3’,!or!‘v4’.!

!

SNP(Statistics(in(the(GWAS(Sample(
These!statistics!describe!the!index!SNPs!in!the!set!of!23andMe!participants!included!in!this!
GWAS.!For!binary!phenotypes,!results!are!shown!for!controls!and!cases!separately.!For!
genotyped!SNPs,!the!statistic!includes!counts!for!each!observed!genotype.!For!imputed!
SNPs,!we!report!mean!dosages.!

Column'name' Definition'
im.num.0' Number!of!controls!imputed!for!this!variant!
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dose.b.0' Average!imputed!dosage!of!the!B!allele!in!controls!
im.num.1' Number!of!cases!imputed!for!this!variant!
dose.b.1' Average!imputed!dosage!of!the!B!allele!in!cases!
AA.0,'AB.0,'BB.0' Counts!of!AA,!AB,!BB!genotypes!in!controls!
AA.1,'AB.1,'BB.1' Counts!of!AA,!AB,!BB!genotypes!in!cases!

For!quantitative!traits,!im.num.0,!dose.b.0,!AA.0,!AB.0,!and!BB.0!describe!all!individuals!
included!in!the!GWAS;!and!im.num.1,!dose.b.1,!AA.1,!AB.1,!and!BB.1!are!set!to!NA.!

Annotations(from(NHGRI(GWAS(Catalog(
This!table!shows!results!of!looking!up!our!association!index!SNPs!in!the!NHGRI!GWAS!
Catalog8,!to!identify!other!reports!of!associations,!for!any!phenotype,!with!SNPs!that!are!
within!500!kb!and!in!moderate!to!high!linkage!disequilibrium!(r2>0.5)!with!one!of!our!
index!SNPs.!

Replication(of(GWAS(Catalog(Results(
In!this!table,!we!take!all!previous!reports!of!associations!with!closely!related!phenotypes!
from!the!NHGRI!GWAS!Catalog,!and!show!association!results!for!our!best!proxy,!defined!as!
the!SNP!with!highest!r2,!within!100!kb!and!with!r2>0.8.!This!can!identify!loci!with!support!
in!the!23andMe!analysis!that!did!not!make!it!into!the!list!of!top!loci.!

Nearby(Nonsynonymous(SNPs(
In!this!table,!we!show!cases!where!an!index!SNP!is!within!500!kb!and!r2>0.5!with!a!SNP!
that!leads!to!an!alteration!in!a!protein’s!amino!acid!sequence.!Coding!SNP!annotations!were!
taken!from!the!UCSC!Genome!Browser’s!snp138CodingDbSnp!table.!

Nearby(Expression(QTLs(
Here,!we!show!cases!where!an!index!SNP!is!within!500!kb!and!r2>0.5!with!a!SNP!that!has!
been!reported!to!be!associated!with!expression!of!a!nearby!gene!(an!expression!QTL!or!
eQTL).!The!following!datasets!were!included!in!the!analysis:!

Publication! Tissue(s)!
Stranger!et!al.,!2007! ! Lymphoblastoid!
Schadt!et!al.,!2008! Liver!
Dimas!et!al.,!2009! Lymphoblastoid,!fibroblast,!T!cell!
Montgomery!et!al.,!2010! Lymphoblastoid!
Gibbs!et!al.,!2010! Cerebellum,!frontal!cortex,!pons,!temporal!cortex!
Zeller!et!al.,!2010! Monocyte!
Fairfax!et!al.,!2012! Monocyte,!B!cell!
Lappalainen!et!al.,!2013! Lymphoblastoid!

Regional(Association(Plots(
The!regional!association!plots!show!association!test!statistics!versus!position!in!the!vicinity!
of!the!strongest!associations.!The!plots!are!generated!with!LocusZoom9,!using!linkage!
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disequilibrium!data!from!the!March!2012!release!of!1000!Genomes!data.!To!preserve!
detail,!results!with!P<10−100!are!set!to!10−100.!In!the!plots,!a!‘o’!symbol!indicates!a!
genotyped!SNP!and!a!‘+’!indicates!an!imputed!SNP.!Color!indicates!strength!of!linkage!
disequilibrium!with!the!index!SNP.!

Privacy(Considerations(
It!is!widely!acknowledged!that!aggregated!genomic!datasets!such!as!GWAS!results!pose!
privacy!risks!and!the!possibility!of!re2identification!of!individual!participants10.!We!use!
several!strategies!to!reduce!the!likelihood!of!a!privacy!breach.!Similar!to!policies!applied!by!
dbGAP,!we!require!that!genome2wide!association!test!results!and!genome2wide!platform!
statistics!can!only!be!used!under!the!terms!of!a!data!transfer!agreement!that!does!not!
permit!use!of!the!data!to!re2identify!individuals!and!restricts!sharing!of!the!data!with!third!
parties.!Statistics!for!up!to!10,000!SNPs!can!be!published!since!this!amount!of!data!is!
considered!to!be!insufficient!to!enable!a!re2identification!attack.!
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See file table S1.tab

Supplementary Table 1. Genomic regions that contain a variant that influences more than one trait.
We identified all genomic regions that contain a variant that influences more than one trait, at a threshold of
a posterior probability of association greater than 0.9. Listed are the position of each locus, the phenotypes
associated with the locus, and the lead SNPs for all phenotypes.
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chromosome start stop putative causal gene phenotypes notes

chr12 110336719 113263518 SH2B3 ALL, PLT, FNBMD, PCV, TS, CD, RA, HB, HTHY, LDL,
HDL, RBC, TC, CAD

often led by nonsynonymous polymorphism rs3184504,
maybe two signals

chr9 135298842 137041122 ABO ALL, PCV, TS, ATH, LDL, MIGR, CEI, HB, RBC, TC,
CAD

putatively driven by an eQTL at ABO or type A1 blood, see
Figure in main text

chr2 26894985 28598777 GCKR PLT, CUP, LDL, CD, FG, TG, HEIGHT, NST, TC often led by nonsynonymous SNP rs1260326
chr16 27445755 29036613 none ALL, BMI, TS, ATH, CD, RA, PD, NST, EDU large LD block at 28-29Mb
chr11 58780549 62223771 none PLT, HEIGHT, LDL, CD, FG, TG, HDL, TC LD block covers FADS1, FADS2
chr6 89973052 91843196 none ALL, ATH, CD, DIMP, SCZ, HTHY, UC covers BACH2
chr6 33236497 35455756 none CUP, BMI, LDL, MIGR, HDL, TC, CAD LD block from 34.5-35Mb
chr6 125424383 127540461 none UB, AAM, HEIGHT, EDU, MIGR, MPB covers CENPW
chr4 100678360 103221356 SLC39A8 ALL, HEIGHT, CD, PD, SCZ, HDL, NST often led by nonsynonymous SNP rs13107325
chr22 19912358 22357325 none HEIGHT, CD, RA, MCV, HDL, TC, UC covers UBE2L3, lots of gaps in SNP coverage
chr19 44744108 46102697 APOE AD, LDL, WHR, TG, HDL, TC, NST covers APOE
chr1 7247335 9365199 none ALL, AAM, FNBMD, ATH, PD, SCZ, UC LD block covers RERE, SLC45A1
chr16 53382572 55903774 IRX3/IRX5 CUP, AAM, BMI, T2D, AVD, HDL intron of FTO
chr10 63341695 65794114 none PLT, BMI, HEIGHT, MPV, TG, HDL , EDU large LD block from 65Mb-65.5Mb
chr8 79132861 81956395 none TS, ATH, RA, EDU, ALL, UC covers ZBTB10
chr15 58441366 59694116 none PCV, HB, TG, HDL, RBC, TC nearest gene is LIPC
chr4 87534648 89238028 none PCV, HB, TG, HDL, RBC, TC large LD block 87.5-88Mb
chr3 139954597 141339097 none ALL, MPB, CD, MCV, HEIGHT, NST LD block covers ACFL2, ZBTB38, RASA2

Supplementary Table 2. Genomic regions with a variant that influences a large number of phenotypes
in these data. We sorted all genomic regions in Supplementary Table 1 (excluding the MHC region from
26-34Mb on chromosome 6, and merging the two GWAS of age at menarche) based on the number of
phenotypes a single variant was predicted to influence. Shown are all regions with a variant that influences
six or more traits. The “putative causal gene” is listed only when there is a nonsynonymous SNP or otherwise
functionally well-characterized allele among the strongest associations in the region.
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Simulations under model 2 (C = 0)
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Simulations under model 3 (C = 0)
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Supplementary Figure 1. Comparison to Stephens’ Bayes factor for uncorrelated traits. We simulated
genotypes and phenotypes for 5,000 individuals, and compared the approximate Bayes factor used here to
that from Stephens [2013]. In each panel, each point is a single simulation.
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Simulations under model 1 (C = −0.4)
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Simulations under model 2 (C = −0.4)
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Simulations under model 3 (C = −0.4)
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Supplementary Figure 2. Comparison to Stephens’ Bayes factor for correlated traits. We simulated
genotypes and phenotypes for 5,000 individuals, and compared the approximate Bayes factor used here to
that from Stephens [2013]. In each panel, each point is a single simulation.
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Supplementary Figure 3. Simulations. We simulated GWAS under four different assumptions, and then
compared our model to a simple P-value based model. In each panel, we show the simulated values of
Π[0−4] and the estimated values. Each point is the mean over 100 simulations, and the bars show the 5-95%
range of parameter values obtained over these 100 simulations. A. Simulations of uncorrelated phenotypes
in separate cohorts. B. Simulations of uncorrelated phenotypes in overlapping cohorts. C. Simulations of
correlated phenotypes in separate cohorts. D. Simulations of correlated phenotypes in overlapping cohorts.
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Supplementary Figure 4. Regional Bayes factors in simulations. For ten simulations (recall that each
simulation consists of 111 regions) of separate cohorts and uncorrelated traits, we extracted all regional
Bayes factors, and grouped regions according to the model under which each was simulated. We then plot
the distribution of the regional Bayes factors under the “true” model. That is, for regions simulated under
regional model 1, we show the distribution of RBF1, for regions simulated under regional model 2, we show
the distribution of RBF2, and so on. Note that the distribution is shifted to the right for regions simulated
under model 3 (a single genetic variant that influences both traits), indicating that there is more evidence
against the null model of no associations in this situation.
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Supplementary Figure 5. Parameter estimates in select GWAS accounting for different factors. For
the noted pairs of GWAS (which we know to have been performed on overlapping sets of individuals), we
ran the model in modes where we either 1) corrected for neither the correlation in the summary statistics
under the null nor for LD, 2) corrected for the correlation in the summary statistics alone, or 3) corrected
for both the correlation in the summary statistics and LD. Shown are the parameter estimates for these three
situations.
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Supplementary Figure 6. Correlations in Z-scores. For each pair of GWAS, we identified regions with
low posterior probability of having a causal variant for either trait, and then calculated the correlation in the
Z-scores for SNPs in these regions. Shown are the estimated correlations for all pairs of traits, ordered from
lowest to highest. Some pairs of note are in color.
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Supplementary Figure 7. Heatmap showing how often loci that influence two traits fall near each other
in the genome. Each square [i, j] shows the maximum a posteriori estimate of the proportion of genetic
variants that influence trait i that fall near a variant that influence trait j (in the notation from the main text,
this is Π̂4

Π̂1+Π̂3+Π̂4
). Note that this is not symmetric. Darker colors represent larger proportions. Colors are

shown for all pairs of traits that have at least one region with a posterior probability of model 4 greater than
0.9.
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● MPV Quantitative traits

Case/control traits
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P > 0.01

Supplementary Figure 8. SH2B3 region. A. Regional association signals. Shown are the P-values for
association in the region for hypothyroidism and HDL cholesterol levels. In red is the nonsynonymous
SNP rs3184504. B. Effect of rs3184504 on all phenotypes. Shown are the effects of the C allele on
all phenotypes where this variant was successfully genotyped or imputed. Bars represent 95% confidence
intervals.
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Supplementary Figure 9. SLC39A8 region. A. Regional association signals. Shown are the P-values
for association in the region for schizophrenia and Parkinson’s disease. In red is the nonsynonymous SNP
rs13107325. B. Effect of rs13107325 on all phenotypes. Shown are the effects of the T allele on all
phenotypes where this variant was successfully genotyped or imputed. Bars represent 95% confidence
intervals.
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Supplementary Figure 10. GCKR region. A. Regional association signals. Shown are the P-values for
association in the region for fasting glucose levels and height. In red is the nonsynonymous SNP rs1260326.
B. Effect of rs1260326 on all phenotypes. Shown are the effects of the C allele on all phenotypes where
this variant was successfully genotyped or imputed. Bars represent 95% confidence intervals.
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Supplementary Figure 11. APOE region. A. Regional association signals. Shown are the P-values for
association in the region for Alzheimer’s disease and nearsightedness. In red is the SNP rs6857, which
tags the APOE4 allele. B. Effect of rs6857 on all phenotypes. Shown are the effects of the T allele on
all phenotypes where this variant was successfully genotyped or imputed. Bars represent 95% confidence
intervals. For ease of display we do not show is the effect size on Alzheimer’s disease, which is 1.2 (on a
log-odds scale).

43



●

●
●●

●●
●●
●

●●
●
●●
●
●
●
●●●
●
●

●●

●
●●
●●●
●●●●

●

●●●●●●
●
●
●●
●●●●●●

●
●
●
●●

●

●●●●●●●
●●
●●●●●●●
●●
●
●
●

●●
●●●
●●●●●●
●●
●●
●●●
●●●●
●●
●●●●
●
●
●

●

●●

●●

●

●

●●
●●
●
●
●

●

●●●

●●
●

●

●

●●
●

●
●●
●

●●
●
●
●●●●●●●●●●
●

●

●
●

●●

●●●●
●
●
●

●●
●
●

●

●●●
●
●

●
●
●
●●

●●

●

●

●

●
●

●

●●

●

●
●
●

●●

●
●
●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●●●

●●

●

●
●
●

●

●●●

●
●

●
●
●

●

●●

●

●

●●
●
●

●
●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●
●●
●
●
●●●

●
●

●
●

●

●
●
●●
●

●
●●●
●

●

●●
●
●

●

●

●
●

●●

●

●

●
●●●●
●

●
●●

●

●

●

●
●●●●
●●

●

●●

●
●

●

●

●

●●

●
●●●

●

●

●
●●●
●●

●●

●

●
●

●

●●

●

●

●

●●

●●
●●●
●
●
●

●●
●
●

●●

●
●
●

●

●●●

●
●

●

●

●
●●

●

●

●

●●●

●

●
●
●●

●●

●
●

●●

●

●●
●
●●●●●●
●
●●
●

●

●●
●

●
●●

●
●
●●●●

●●

●●●●●●

●
●

●
●●●●

●

●
●

●

●
●
●●●
●
●
●
●

●

●

●
●●

●
●
●●
●

●●

●

●
●
●

●●
●

●

●
●

●●
●●●
●

●

●

●

●

●●
●●

●
●
●●

●
●

●

●●

●

●●
●

●
●●

●●
●

●

●

●●
●●●
●●
●●●
●

●
●
●
●
●
●
●

●
●●
●●

●●

●

●
●

●●

●

●●

●

●●

●

●●
●
●●

●

●
●

●

●
●
●
●

●

●
●●
●

●
●

●
●●
●
●

●

●●●
●

●

●●
●

●

●

●●●
●●●
●

●

●

●
●●●●●●●
●
●
●●

●●

●●

●

●
●●

●●●
●●●

●

●●
●
●

●

●
●
●

●

●
●
●●
●
●
●
●

●●
●
●
●●●
●

●
●●●
●●
●

●

●●●

●●●●
●
●●
●
●
●●
●●

●

●
●
●
●
●
●●
●
●
●

●
●
●●
●●

●●●●●

●●

●●

●

●
●
●

●●●
●●●
●
●●●
●

●

●●

●●
●

●●●●

●

●

●

●●●
●●
●
●
●●

●
●
●

●

●

●
●

●●●●

●
●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●
●

●
●●●

●

●●●
●
●●
●

●

●

●
●

●

●●●●●
●●

●●

●●●

●

●

●

●

●

●●●

●●

●

●●

●

●●●

●●

●●●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●●●

●
●

●

●

●
●●

●●

●●
●
●●●

●

●●
●●

●●

●

●

●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●●
●
●

●

●
●●
●
●

●

●

●

●

●

●
●

●●●

●

●
●
●●

●●

●
●
●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●●●●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●●●●

●

●●

●

●

●

●
●●

●

●

●●

●

●●●●●
●●
●

●

●

●●●

●

●

●●

●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●●

●●

●

●

●
●

●

●

●
●
●

●
●

●

●●
●

●
●

●
●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●

●

●●●

●
●●

●

●

●

●

●

●

●●

●●●

●
●

●

●●●

●
●

●
●

●

●●

●

●●●

●

●●
●

●

●
●
●

●

●

●

●
●●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●●

●

●●●●●

●

●●●

●●
●

●

●●●

●

●●
●●

●

●●●●●
●
●●●●
●●●

●●

●●●

●

●

●

●●●●●

●

●●●●●●
●

●

●●

●
●

●●●●
●

●
●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●

●
●●
●
●●●●
●
●
●●●●
●

●●●
●
●●●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●●
●●
●●●
●●●
●●●

●
●●

●
●●
●●

●

●

●

●
●
●
●

●

●●

●

●

●

●●●●

●

●

●

●●●●
●
●●●

●

●●
●
●
●
●
●
●

●

●
●
●●●

●

●●

●●
●
●●●●●

●
●

●●
●
●
●●

●●

●●

●●

●

●
●
●●●

●

●●
●
●●●
●
●

●
●

●
●

●
●
●
●
●●
●
●
●●●
●

●
●●●●●●●●
●●

●

●●

●●

●●

●

●

●●●
●●●●●

●●
●●●●●

●

●

●
●

●

●

●

●●

●●●
●
●

●

●●●
●
●●●●
●●
●
●●
●●
●
●
●
●
●

●●
●
●
●

●●
●

●●

●●

●●

●

●

●

●
●

●

●●

●●

●●

●

●

●
●●
●●●●

●

●
●●●●
●
●
●
●●

●

●●●●
●
●●

●

●●●
●●●●

●

●
●●
●●
●●●

●

●●●●

●

●

●

●

●●
●
●

●
●

●

●
●
●
●

●

●●

●

●

●●
●

●

●●●●●●●●●
●●●
●
●
●●
●●●
●●●
●
●

●
●●●●●●●●●●

●●
●
●
●●●●

●

●
●●●●●●●●●
●●●
●

●

●
●●
●●●
●

●
●

−
lo

g 1
0(

P
) 

[a
ge

 a
t m

en
ar

ch
e]

●

A. Regional associations

0
2

4
6

8
10

12
14

53.6 53.7 53.8 53.9
Position on chr12 (Mb)

AKTIP

FTO

RBL2 RPGRIP1L

●●●
●

●

●

●

●●
●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●
●

●●

●●●

●

●

●
●
●●●●●●●●●
●●●●

●

●●●
●
●

●

●●●●●●●
●●
●
●●●

●
●

●
●
●●●●

●●
●●

●

●●

●●●●

●●

●
●●
●

●

●●●

●

●●●

●

●●
●

●

●●●●●

●

●

●

●
●●
●●●
●

●●

●
●

●●●

●
●

●●
●

●●
●
●

●

●●●●●
●
●

●●

●●●
●●●

●

●●●●
●●●●●

●

●●●

●

●
●●

●●

●
●●●
●●
●●
●

●

●

●●●●
●
●
●●●
●●●●

●
●●
●
●●
●

●

●

●●●●●
●
●
●●●
●●
●
●
●●●●●

●

●

●
●●●

●
●

●

●●
●
●

●

●
●
●
●●●
●
●●●●●●

●

●●●
●●

●
●
●

●
●

●

●

●
●

●●

●●

●●
●
●
●●
●●●●●●●●
●●

●
●
●●

●

●●
●
●

●

●
●
●
●

●●●●
●
●

●

●

●

●

●
●

●●

●

●●
●●●●●

●

●●

●●

●●●●
●
●●●
●

●

●
●

●
●

●
●

●

●●
●
●●

●

●●

●

●

●

●

●
●●

●
●

●●

●●

●
●
●

●
●

●●●●●

●

●

●

●●●●

●

●
●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●
●

●

●●

●

●

●

●

●

●
●●

●

●●

●●●

●

●

●●●
●

●
●
●●●●●●●●●

●
●

●
●●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●●

●●

●●

●

●

●

●●●●

●

●

●

●●●●●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●●
●●●●
●
●●●
●

●
●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●
●●

●●

●●
●
●

●
●●●

●●

●

●

●●

●●

●●

●
●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●
●●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●●●
●●
●

●
●
●●●
●

●●

●
●●●

●

●

●●●
●●

●●●

●●

●

●

●
●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●●●

●
●
●●

●

●

●●

●

●●

●
●●
●●

●

●

●
●
●
●

●

●●●

●

●●●
●

●

●●

●

●●●

●

●●●

●●●●●●
●●●

●

●●
●

●

●●

●

●

●●●

●●
●
●●
●

●●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●●

●

●

●●●

●

●

●●

●

●●●

●

●
●●●
●
●
●
●●●●●●●●●●

●
●
●
●●

●
●
●

●

●●
●
●●
●

●

●
●

●

●
●●●●

●
●●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●●

●
●

●

●●●
●
●●

●
●●

●
●●

●

●

●

●

●

●

●
●●●●

●●●●●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●●

●
●●

●●

●

●

●
●

●
●
●

●

●
●
●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●

●

●

●●

●●●

●

●

●●

●●
●

●

●

●●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●
●
●
●●
●
●

●
●●
●
●
●●●●
●

●

●
●
●●
●

●

●

●●
●

●

●

●
●
●●●
●

●●

●●●

●

●
●●●●
●●
●
●

●

●

●

●
●●
●●●

●

●

●

●

●●●
●

●

●

●
●●
●
●●●
●

●●
●

●
●
●●●●

●●

●●

●

●
●●
●

●

●
●
●
●
●
●
●

●

●●

●

●

●
●
●

●

●
●

●

●●●
●
●●
●
●●●●●●
●

●
●

●

●●●
●

●
●
●

●

●
●●●●●
●
●●

●

●●●●

●

●●
●
●

●

●
●●●●
●

●
●●●●●●●●
●
●●
●

●

●●●●

●

●
●
●
●●●●●●

●

●●●
●
●
●●●●

●

●●
●
●
●●●●●

●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●

●●

●
●
●●

●

●

●
●●
●●
●●
●
●

●●

●
●

●
●
●●
●

●

●

●●
●

●

●

●
●

●

●
●
●
●●

●

●

●

●

●●
●
●●
●●
●●

●

●

●

●

●

●
●●●●●●●

●●

●●●

●

●

●

●●
●
●

●

●●●
●●●
●

●●●●

●

●

●

●

●

●

●

●

●●
●
●●●●●●●

●

●

●

●

●

●
●●●

●

●
●
●
●

●

●

●
●

●

●

●

●●

●

●●
●

●

●
●●
●

●

●
●

●

●

●

●
●●
●
●

●

●●
●

●

●

●●
●

●
●

●
●
●●
●
●

●●●
●●
●●●●

●

●

●

●●●

●

●●

●

●●●●●●●
●●●●

●

●
●
●●●●●●●●●

●

●

●

●●
●●●●●

●●

●

●

●
●●
●●
●

●

●
●●

●

●

●●

●

●

●

●●
●●●

●●

●●
●

●

●

●

●
●●

●

●

●

●
●●

●●

●●

●●

●
●

●
●●

●●●
●
●
●
●
●●●
●

●
●●
●●

●

●●
●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●
●

●●

●

●

●●
●

●●

●

●●●●●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●●

lo
g 1

0(
P

) 
[b

re
as

t s
iz

e]

●

−
6

−
4

−
2

0

Effect size (s.d./ln[odds])

−0.2 −0.1 0.0 0.1 0.2

B. rs1421085 T−>C, all effects

● BMI
● AAM (23)

● AAM
● CUP

● AVD
● HDL

● HEIGHT
● NOSE

● WHR
● TG

● MCHC
● FNBMD

● RBC
● MCV
● LSBMD

● TC
● FG
● HB
● EDU

● PCV
● BHM
● UB
● PLT
● MPV
● LDL Quantitative traits

Case/control traits

● AD
● DIMP

● UC
● PD
● ALL
● SCZ

● RA
● TS
● PS

● CD
● HTHY

● MPB
● CAD

● MIGR
● CEI
● ATH

● NST
● T2D

●

●

●

P < 5 x 10−8

P < 0.01
P > 0.01

Supplementary Figure 12. FTO region. A. Regional association signals. Shown are the P-values for
association in the region for age at menarche and breast size. In red is the SNP rs1421085. B. Effect of
rs1421085 on all phenotypes. Shown are the effects of the C allele on all phenotypes where this variant
was successfully genotyped or imputed. Bars represent 95% confidence intervals.
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LD−score genetic correlations across all pairs of traits
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Supplementary Figure 13. Heatmap of genetic correlations. Each square [i, j] shows the estimate of the
genetic correlation between traits i and j, using the method from Bulik-Sullivan et al. [2015]. Note that this
is symmetric. Darker colors represent stronger genetic correlations. Colors are shown for all pairs of traits
where the genetic correlation is “significant” at a P-value threshold of 0.005.
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A. Putative causally−related traits
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Supplementary Figure 14. Additional pairs of traits with some evidence of a causal relationship A. List
of all pairs of phenotypes. Shown is the list of pairs of phenotypes with a relative likelihood greater than
20 (but less than 100) in favor of a causal model, ordered with the largest relative likelihood at the top.
Examples of SNP effect sizes for select pairs (as in Figure 5 in the main text) are shown for age at menarche
and height (B. and C.), hemoglobin levels and type 2 diabetes (D. and E.), and Beighton hypermobility and
lumbar spine bone density (F. and G.)
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Supplementary Figure 15. Distribution of the relative likelihood under the null. We simulated data under
the null model where the effects of a variant on two phenotypes are independent, and fit the model described
in the main text. Shown is the distribution of the relative likelihood using simulations of different numbers
of genetic variants. In each panel N1 represents the number of simulated loci that influence trait 1, and N2
represents the number of simulated loci that influence trait 2. Each distribution is over 10,000 simulations.
The grey line shows a relative likelihood of 0.01 (the threshold used in the main text) and the grey number
is the fraction of simulations with a relative likelihood less than 0.01.
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Supplementary Figure 16. Power to detect a causal relationship. We simulated data under a model
where one phenotype causes another, and fit the model described in the main text. Shown is the fraction of
simulations where the relative likelihood in favor of a causal model is less than 0.01, as a function of the
simulated correlation in effect sizes. Each point is a summary over 10,000 simulations.
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Supplementary Figure 17. Effect sizes of genetic variants on BMI and A. TG or B. type 2 diabetes in a
larger dataset. Shown are the effect sizes of genetic variants on BMI and TG/T2D for variants identified in
a larger GWAS for BMI, see Supplementary Text for details. In red are individual SNPs of note.

48



●

●

●

●

●

●

●

●

●

●

●

−0.15 −0.05 0.05 0.15

−
0.

05
0.

00
0.

05
0.

10

Effect size on CAD

E
ffe

ct
 s

iz
e 

on
 R

A

●

●

●

●

●

●

●

●

●

●

●

A. CAD v. RA (CAD ascertainment)

● ●

●

●

●● ●
●

●

●●

●●

●

●●

●

●

● ●

●
●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

● ●

● ●

−0.05 0.00 0.05

−
0.

2
0.

0
0.

2
0.

4
0.

6

Effect size on CAD

E
ffe

ct
 s

iz
e 

on
 R

A
● ●

●

●

●● ●
●

●

●●

●●

●

●●

●

●

● ●

●
●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

● ●

● ●

B. CAD v. RA (RA ascertainment)

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

−0.1 0.0 0.1 0.2

−
0.

10
0.

00
0.

05
0.

10

Effect size on CAD (expanded set)

E
ffe

ct
 s

iz
e 

on
 R

A ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

C. CAD v. RA (expanded CAD set)

Supplementary Figure 18. Effect sizes of genetic variants on CAD and RA. Lines represent one standard
error. A. and B. CAD and RA, initial analysis. The effect sizes of genetic variants on CAD and RA for
variants identified in the GWAS for CAD (A.) or RA (B.). C. Effect sizes of genetic variant on CAD
and RA, expanded analysis. Shown are the effect sizes of genetic variants on CAD and RA for variants
identified in a larger GWAS for CAD, see Supplementary Text for details.
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Pers, T. H., Fischer, K., Justice, A. E., et al., 2015. New genetic loci link adipose and insulin biology to
body fat distribution. Nature, 518(7538):187–96.

Song, Y., Yeung, E., Liu, A., Vanderweele, T. J., Chen, L., Lu, C., Liu, C., Schisterman, E. F., Ning, Y., and
Zhang, C., et al., 2012. Pancreatic beta-cell function and type 2 diabetes risk: quantify the causal effect
using a Mendelian randomization approach based on meta-analyses. Hum Mol Genet, 21(22):5010–8.

Stephens, M., 2013. A unified framework for association analysis with multiple related phenotypes. PLoS
One, 8(7):e65245.

Su, Z., Marchini, J., and Donnelly, P., 2011. HAPGEN2: simulation of multiple disease SNPs. Bioinfor-
matics, 27(16):2304–5.

Timpson, N. J., Nordestgaard, B. G., Harbord, R. M., Zacho, J., Frayling, T. M., Tybjærg-Hansen, A., and
Smith, G. D., 2011. C-reactive protein levels and body mass index: elucidating direction of causation
through reciprocal Mendelian randomization. Int J Obes (Lond), 35(2):300–8.

Villareal, D. T., Robertson, H., Bell, G. I., Patterson, B. W., Tran, H., Wice, B., and Polonsky, K. S., 2010.
TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes,
59(2):479–85.

Wakefield, J., 2008. Bayes factors for genome-wide association studies: comparison with P-values. Genet
Epidemiol, 33(1):79–86.

Wen, X. and Stephens, M., 2010. Using linear predictors to impute allele frequencies from summary or
pooled genotype data. Ann Appl Stat, 4(3):1158–1182.

Wen, X. and Stephens, M., 2014. Bayesian methods for genetic association analysis with heterogeneous
subgroups: From meta-analyses to gene–environment interactions. The Annals of Applied Statistics,
8(1):176–203.

Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., Chu, A. Y., Estrada, K., Luan, J.,
Kutalik, Z., et al., 2014. Defining the role of common variation in the genomic and biological architecture
of adult human height. Nat Genet, 46(11):1173–86.

Yang, J., Ferreira, T., Morris, A. P., Medland, S. E., Genetic Investigation of ANthropometric Traits (GI-
ANT) Consortium, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Mad-
den, P. A. F., Heath, A. C., Martin, N. G., Montgomery, G. W., et al., 2012. Conditional and joint
multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex
traits. Nat Genet, 44(4):369–75, S1–3.

52



Zhang, Q., Feitosa, M., and Borecki, I. B., 2014. Estimating and testing pleiotropy of single genetic variant
for two quantitative traits. Genet Epidemiol, 38(6):523–30.

Zhou, X. and Stephens, M., 2014. Efficient multivariate linear mixed model algorithms for genome-wide
association studies. Nat Methods, 11(4):407–9.

53


	GWAS data
	Previously described in pickrell2013joint
	Body mass index
	Waist-hip ratio
	Coronary artery disease
	Crohn's disease
	Ulcerative colitis
	Educational attainment
	Type 2 diabetes
	Alzheimer's disease
	Schizophrenia
	Height
	Age at menarche
	Rheumatoid arthritis
	23andMe data
	Counting independent numbers of associated variants
	Approximating the correlations in the effect sizes under the null model

	Hierarchical model
	Bayes factor calculations
	Regional Bayes factor
	Likelihood
	Bayes factors for overlapping cohorts
	Fitting the model
	Comparison to Stephens's Bayes factors
	Simulations
	Simulated traits
	Results

	Accounting for linkage disequilibrium in overlapping cohorts
	Conditional Bayes factors.
	Regional Bayes factors
	Application


	Causal inference
	Implications of looking explicitly for asymmetry.
	Simulations
	Simulations under the null.
	Power simulations.

	Expanded analysis of putative causally-related traits

	23andMe GWAS Methods
	Supplementary Tables
	Supplementary Figures

