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Appendix: Penalized regression 

The following description except the elastic net penalty follows the description of penalized 

regression in James et al. (1, Chapter 6.2).  

To address the curse of dimensionality (2), the parameter estimate   from the classical linear 

regression model 
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with the number of cases   and number of features  , has been constrained by various penalty 

terms with different ensuing characteristics of the estimates of the   coefficients. 

The penalty terms decrease fit variance at the cost of increasing bias. Through the variance-bias 

trade-off, overall fit of a penalized parameter estimate can be improved over the simple least 

square estimation of the parameter without penalization. 

In 1970, Hoerl and Kennard (3) introduced the ridge penalty, with an L2 quadratic penalty 
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with the tuning parameter    , and the shrinkage penalty  ∑   
 

 , and the number of features 

 . This penalty shrinks the magnitude of all coefficients, but sets no coefficient exactly to zero. 

As a result, it increases prediction accuracy, but has limited model interpretability in the presence 

of a high number of features. 

In 1996, Tibshirani (4) described the Least Absolute Shrinkage and Selection Operator 

(Lasso), which is characterized by an L1 (absolute value) penalty, 
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with the tuning parameter    , the shrinkage penalty  ∑ |  | , and number of features  . 

The Lasso forces some of the coefficients to become zero, so that it provides both shrinkage and 

subset selection. The fit for the Ridge regression is superior to the Lasso if many variables are 

truly related to the outcome, whereas the fit of the Lasso is superior to the Ridge if only few 

variables are truly related to the outcome. 

For collinear data, which are characterized by subgroups of features with high intercorrelation, 

such as has to be expected in brain imaging data with hubs that are interconnected in partly 

overlapping networks, the Lasso has the unfavorable characteristics that it selects only one 

among a group of highly correlated features. In addition, if    , i.e. the number of features is 

larger than the number of cases, the Lasso selects at most   variables.  

To overcome these limitations, in 2005, Zou and Hastie (5) introduced the elastic net penalty 

that was extended to non-linear regression, such as logistic regression, in 2010 (6). Elastic net 

penalty regression features both, the L2 norm (quadratic) Ridge and the L1 norm Lasso penalty 

that are governed by an additional parameter        , 
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If    , the elastic net penalty becomes the Ridge penalty, while if    , the elastic net 

penalty becomes the Lasso penalty. In addition, in simulated data, the elastic net penalty has 

been shown to select or discard highly correlated features as a group (5). 
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