## Microbial taxa and functional genes shift in degraded soil with bacterial

## wilt

## Running title: Microbial communities respond to soil degradation

Hongchun Zhang<sup>1a</sup>, Rui Wang<sup>1a</sup>, Shu Chen<sup>1</sup>, Gaofu Qi<sup>1</sup>, Zhili He<sup>1,2</sup>, Xiuyun Zhao<sup>1\*</sup>

<sup>1</sup>College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;

<sup>2</sup>Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA.

<sup>a</sup> Same contribution to this study.

\*Correspondence author, E-mail: xiuyunzh@mail.hzau.edu.cn; Tel: +86-15387157410.

| Samples | Number of reads | Number of OTUs | Chao 1 | Shannon's index |
|---------|-----------------|----------------|--------|-----------------|
| D01     | 28837           | 6379           | 14135  | 7.54            |
| D02     | 25414           | 5948           | 14530  | 7.29            |
| D03     | 25119           | 5004           | 10076  | 7.15            |
| D04     | 28034           | 6364           | 12940  | 7.71            |
| D05     | 28034           | 6881           | 14886  | 7.76            |
| H01     | 44458           | 10566          | 53235  | 8.20            |
| H02     | 42545           | 7709           | 18288  | 7.96            |
| H03     | 38881           | 8233           | 22691  | 7.99            |
| H04     | 25645           | 9579           | 37568  | 8.13            |
| H05     | 35772           | 6888           | 14602  | 7.82            |

Table S1 Summary for 16S rRNA pyrosequencing data

Table S2 Summary for 18S rRNA pyrosequencing data

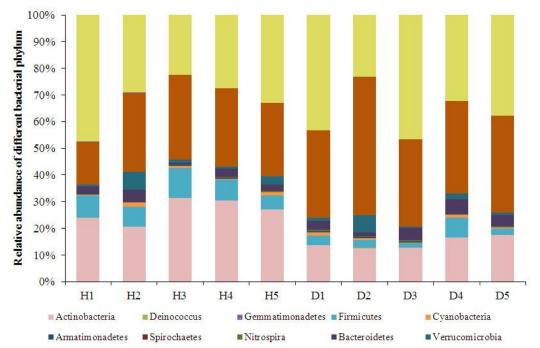
| Sample | Number of reads | Number of OTUs | Chao 1 | Shannon's index |
|--------|-----------------|----------------|--------|-----------------|
| H01    | 24900           | 1984           | 7336   | 4.29            |
| H02    | 43031           | 2131           | 9760   | 4.39            |
| H03    | 24976           | 1458           | 6643   | 3.65            |
| H04    | 25889           | 2216           | 10302  | 4.34            |
| H05    | 43600           | 1867           | 8443   | 3.99            |
| D01    | 43685           | 1524           | 6140   | 3.66            |
| D02    | 45838           | 1136           | 6314   | 3.77            |
| D03    | 28505           | 1729           | 8027   | 3.79            |
| D04    | 46567           | 1348           | 6633   | 3.63            |
| D05    | 38220           | 1776           | 8224   | 3.87            |

| OTU         | Note that $(0/\frac{1}{2} + 1)^{2}$      | Abundance in               | Abundance in                |
|-------------|------------------------------------------|----------------------------|-----------------------------|
| designation | Nearest strain (% identity) <sup>a</sup> | Healthy soils <sup>b</sup> | Degraded soils <sup>b</sup> |
| 890         | Ralstonia solanacearum strain            | $6.6\pm1.52~B$             | $15.6\pm2.66A$              |
|             | in4ss52 (99%)                            |                            |                             |
| 10283       | Ralstonia solanacearum strain            | $0.2\pm0.45\;b$            | $1.6 \pm 0.89 \ a$          |
|             | in4ss52 (98%)                            |                            |                             |
| 12313       | Ralstonia solanacearum strain            | $0.4\pm0.54\;B$            | $2.2\pm0.84~A$              |
|             | 08BF31TG (99%)                           |                            |                             |
| 1075        | Pseudomonas corrugate strain             | $2.4\pm0.54\;B$            | $4.4\pm0.89A$               |
|             | BS3649 (99%)                             |                            |                             |
| 1197        | Pseudomonas mediterranea                 | $2.2\pm1.09~b$             | $4.2 \pm 1.64 \text{ a}$    |
|             | strain DSM 16733 (99%)                   |                            |                             |
| 4678        | Pseudomonas aeruginosa                   | $0.8\pm0.44\;b$            | $2.4 \pm 1.51$ a            |
|             | strain BOAKS 44E (99%)                   |                            |                             |
| 11417       | Pseudomonas corrugata strain             | $0.2\pm0.44~B$             | $1.8\pm0.83A$               |
|             | BS3649 (99%)                             |                            |                             |
| 13587       | Pseudomonas corrugata strain             | $0.2\pm0.44~B$             | $1.2\pm0.44~A$              |
|             | BS3649 (98%)                             |                            |                             |
| 14466       | Pseudomonas corrugata strain             | 0 B                        | $1.4\pm0.54A$               |
|             | BS3649 (98%)                             |                            |                             |
| 23851       | Pseudomonas syringae isolate             | 0 B                        | $1.8\pm0.83A$               |
|             | 21 (97%)                                 |                            |                             |

Table S3 Pathogenic Ralstonia and Pseudomonas OTUs

<sup>a</sup> % identity values are from analyses using BLAST (NCBI) where coverage was at least 97%.

<sup>b</sup> The different lower-case letters and capital letters in same row indicated significant difference between healthy and degraded soils at P < 0.05 and P < 0.01, respectively.



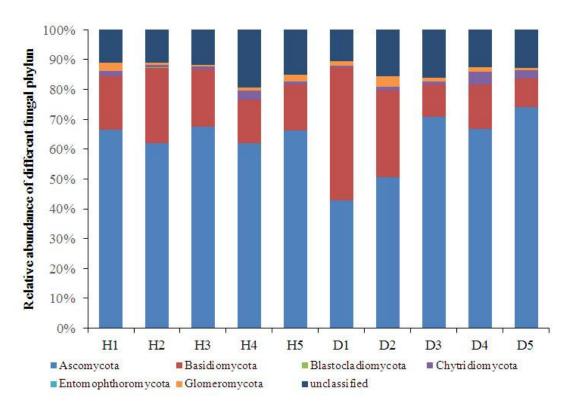


Figure S1 Relative abundances of the dominant bacterial taxa in healthy and degraded soil samples at the phylum level. H1-5: healthy soils; D1-5: degraded soils.

Figure S2 Relative abundances of the dominant fungal taxa in healthy and degraded soil samples at the phylum level. H1-5: healthy soils; D1-5: degraded soils.

Proteobacteria

Acidobacteria

Planctomycetes



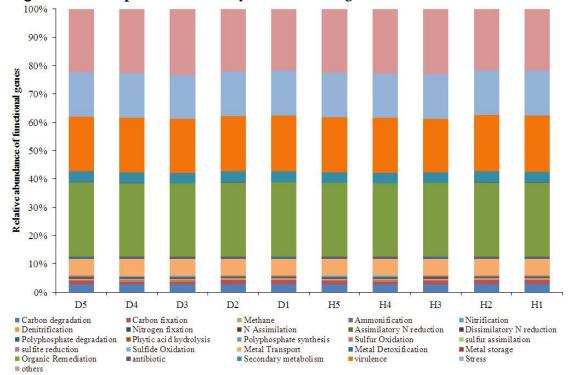



Figure S3 Relative abundance of various functional groups detected in healthy and degraded soil samples. H1-5: healthy soils; D1-5: degraded soils.

Figure S4 Stress related genes. The normalized signal intensity of functional genes involved in stress was compared between healthy and degraded soils. All data are presented as the mean  $\pm$  SE. \* P < 0.05.

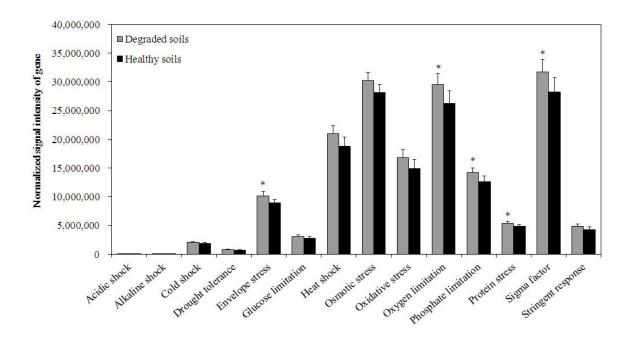



Figure S5 Virulence related genes. The normalized signal intensity of genes involved in virulence was compared between healthy and degraded soils. All data are presented as the mean  $\pm$  SE. \*\* *P*< 0.01, \* *P*< 0.05.

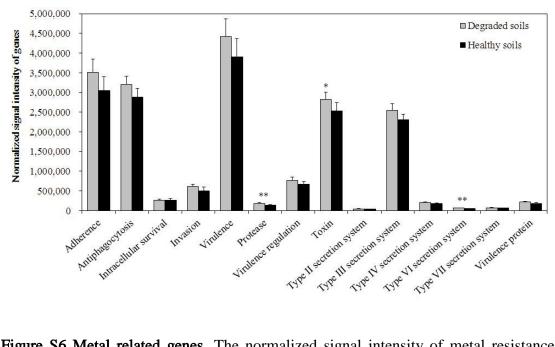
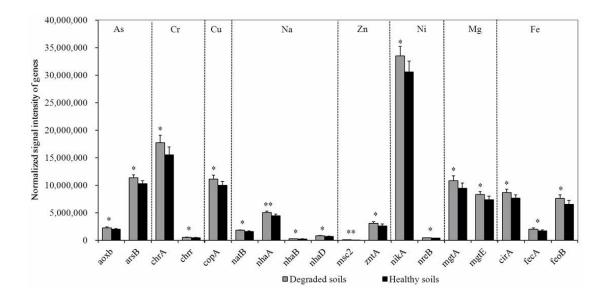




Figure S6 Metal related genes. The normalized signal intensity of metal resistance genes was compared between healthy and degraded soils. All data are presented as the mean  $\pm$  SE. \*\* *P*<0.01, \* *P*<0.05.

