

Expanded View Figures

Figure EV1. AhR expression is independent of NF-κB activation.

- A qPCR analysis of *Ahr* expression in splenic B220⁺ and plasma cell (PC) subsets and bone marrow PC subset sorted from C57BI/6 mice. *Ahr* expression was normalized to *Hprt1*. n = 2 independent experiments; mean \pm range.
- B qPCR analysis of Ahr expression in T_H17 and splenic B-cell subsets sorted from *ll17Cre R26R eYFP* mice. Ahr expression was normalized to *Hprt1*. n = 1 experiment; mean.
- C qPCR analysis of Ahr expression in splenic B-cell subsets sorted from C57Bl/6 mice. Ahr expression was normalized to Hprt1. n = 2 independent experiments; mean \pm range.
- D qPCR analysis of *Ahr* expression in splenic CD19⁺ cells isolated from C57Bl/6 mice and cultured for 6 h as indicated. *Ahr* expression was normalized to *Hprt1*; *Ahr* expression was normalized among groups to medium without Bl605906 (medium -). n = 2 independent experiments; mean \pm range. FC: fold change.
- E Western blot analysis of whole protein extract from splenic CD19⁺ cells isolated from C57Bl/6 mice and cultured for 6 h as indicated. Values above the blots indicate AhR protein quantification obtained by densitometry, normalized to β -actin and compared to the sample treated with α -IgM without BI605906. Representative data of n = 2 independent experiments.
- F Western blot analysis of whole protein extract from splenic CD19⁺ cells isolated from C57Bl/6 mice and cultured for 60 min as indicated. Values above the picture indicate $l\kappa B\alpha$ protein quantification obtained by densitometry, normalized to β -actin and compared to the sample treated with medium without Bl605906. Representative data of n = 2 independent experiments.

Figure EV2. The Ahr^{fi/fi} R26R eYFP allele combined with the mb1^{Cre} system allows B cell-specific Ahr deletion and eYFP expression.

A Breeding strategy to generate B cell-specific Ahr^{-/-} mice, all carrying Cre recombinase. Ahr^{fi/-} mb1^{Cre+} mice lack Ahr in B cells. Ahr^{fi/+} mb1^{Cre+} mice are Ahr^{+/-} in B cells. Cre activity is reported via eYFP expression.

B, C qPCR analysis of Ahr expression in the indicated cell subsets sorted from bone marrow (B) and spleen (C) of non-immune Ahr^{fi/+} mb1^{Cre+} and Ahr^{fi/-} mb1^{Cre+} mice. Ahr expression was normalized to Hprt1. Sorting strategy from bone marrow is depicted in the dot plot shown in (B). n = 3 independent experiments; mean ± SEM.

D, E Flow cytometry analysis of eYFP expression in bone marrow (D) and spleen (E) from non-immune $Ahr^{fl/+} mb1^{Cre+}$ mice. Cells were gated as indicated above the dot plots. Representative data of n = 3 independent experiments.

Figure EV3. B cell-specific Ahr deficiency does not cause overt alterations in steady-state B-cell immunity.

A Flow cytometry analysis of distribution of B-cell subsets sorted from spleen, bone marrow (BM), peritoneal cavity (PeC) and Peyer's patches (PP) of eight-week-old male non-immune $Ahr^{fl/-}mb1^{Cre+}$ (black) and $Ahr^{fl/-}mb1^{Cre+}$ (white) mice. n = 3 mice per group; mean \pm SEM; unpaired two-tailed t-test.

B–G ELISA quantification of indicated antibody isotypes in the serum of 8-week-old male and female non-immune Ahr^{fi/+} mb1^{Cre+} (black) and Ahr^{fi/-} mb1^{Cre+} (white) mice. Line indicates mean value; unpaired two-tailed t-test.

Figure EV4. B cell-specific Ahr-deficient mice respond normally to the T-independent antigen TNP-Ficoll, the T-dependent antigen NP-CGG and mucosal challenge with cholera toxin.

- A–D ELISA quantification at indicated time points of anti-TNP IgM (A), anti-TNP IgG3 (B), anti-NP IgM (C) and anti-NP IgG1 (D) antibodies in the serum of male (circle) and female (square) $Ahr^{fl/+} mb1^{Cre+}$ (black) and $Ahr^{fl/-} mb1^{Cre+}$ (white) mice immunized i.p. with 10 µg/mouse TNP-Ficoll (A, B) or 10 µg/mouse NP-CGG (C, D). n = 2 independent experiments, five mice per group; mean \pm SEM; two-way ANOVA, Sidak's test.
- E-H Flow cytometry analysis of GC B-cell (E, G) and T_{FH^-} cell (F, H) distributions in Peyer's patches isolated at d14 post-immunization from male (E, F) and female (G, H) $Ahr^{fl/+} mb1^{Cre+}$ (black) and $Ahr^{fl/-} mb1^{Cre+}$ (white) mice immunized i.g. with 2.5 µg/mouse cholera toxin (Ctx). Representative data of n = 3 independent experiments. Line indicates mean value.
- I-L ELISA quantification at d14 post-immunization of serum (I, K) and faecal (J, L) anti-Ctx IgA antibodies from male (I, J) and female (K, L) Ahr^{fl/+} mb1^{Cre+} (black) and Ahr^{fl/-} mb1^{Cre+} (white) mice immunized i.g. with 2.5 µg/mouse cholera toxin. Representative data of n = 3 independent experiments. Line indicates mean value.

Figure EV5. AhR deficiency does not affect the affinity maturation process in vivo.

- A Host CD45.1 mice were co-transferred with a 1:1 mixture of HEL-specific $Ahr^{+/+}$ CD45.1⁺CD45.2⁺ splenocytes isolated from $SW_{HEL}Ahr^{+/+}$ mice and HEL-specific $Ahr^{-/-}$ CD45.2⁺ splenocytes isolated from $SW_{HEL}Ahr^{-/-}$ mice, and SRBC-HEL3x or SRBC-mock. Readout at d10 post-challenge was distribution of HEL3x-binding $Ahr^{+/+}$ CD45.1⁺CD45.2⁺ vs. $Ahr^{-/-}$ CD45.2⁺ cells.
- B Flow cytometry analysis of distribution of HEL3x-binding CD45.1⁺CD45.2⁺ and CD45.2⁺ cells harvested from host mice challenged as indicated in (A). Cells were gated as indicated above the plots. Representative data of n = 2 independent experiments.