
Figure S1 

 

Figure S1: Broad H3K4me3 domains are key regulatory elements in mESCs, related to Figure 1 

A)  Diagram showing the H3K4me3 breadth and level of H3K27me3 (Mikkelsen et al., 2007) for each gene in 
mESC. Pluripotency genes and Hox genes are marked by a green or red dot, respectively. The expression 
curves show a sliding window of 50 datapoints, using data from (De Cegli et al., 2013). The Esrrb gene has 
two transcription start sites, possessing either H3K27me3 or a broad H3K4me3 domain (see also Figure 1B). 
B) Change of the average gene expression during early embryogenesis (Su et al., 2004) of pluripotency, Hox 
and all genes. C,D) H3K4me3 breadth of each gene in mESCs compared to embryonic limb or brain, using 
data from (Shen et al., 2012). Tet1 loses H3K4me3 breadth, while the HoxA cluster gains H3K4me3 breadth 
in the limb. E) Occupancy of genes with broad H3K4me3 with members of the Myc (blue) and Core (grey) 
module. F) Three example broad H3K4me3 domains showing the presence of Myc related transcription 
factors (Kim et al., 2010). Broad H3K4me3 domains at pluripotency genes, such as Tet1, are more often 
occupied by members of the Core module (Whyte et al., 2013).  

  



Figure S2 

 

Figure S2: Establishment of Epop KO mESCs and antibody validation, related to Figure 1. 

A) Western blot showing the screen of several Epop CRISPR mESCs knockout clones. Genomic DNA of 3 
single cell clones was amplified by PCR, cloned into the pENTR/D vector and sequenced. B) Proliferation 
curves of Epop KO clones compared to control cells. Values are mean ± SD of triplicates. C) Bright field 
microscopy of control and Epop KO cells. The scale bars indicate 20 µm. D) Schematic overview of mouse 
EPOP pieces used for raising rabbit polyclonal antibodies. Ab1 was made using a peptide, while the antigens 
for Ab2 and Ab3 were purified as GST-fusion protein. E) Western blotting of control or Epop KO mESCs 
using the three antibodies. Asterisks indicate unspecific bands. F) Immunofluorescence of control or Epop 
KO mESCs using the three antibodies under identical experimental conditions. For Ab1 and Ab2 the original 
pictures were computational enhanced. The scale bars indicate 10 µm. G) Heatmaps of EPOP ChIP-Seq 
data obtained from all 3 antibodies in control and Epop KO cells. ChIP-Seq data for H3K4me3 and 
H3K27me3 were used as comparison. H) Promoter profiles of the EPOP ChIP-Seq data at genes with and 



without broad H3K4me3 domains, as well as PRC2 target genes. The P-values were calculated by ANOVA. 
I) Overlap of MACS-called peaks of the three EPOP ChIP-Seq experiments.  

  



Figure S3 

 

Figure S3. EPOP plays a role at actively transcribed genes, related to Figure 1 and 2. 

A) Cellular fractionation of mESCs after treatment with the transcriptional inhibitors DRB or triptolide for 1 
hour. Actin, tubulin or H3 is shown as loading control. B) EPOP ChIP-qPCR experiments after 1h treatment 
of wildtype mESCs with DRB and triptolide. Values show mean ± SD of duplicates.  (* p < 0.05, Student’s t-
test) C) Upper panel: Browser view for H3K4me3 at the Tet1 and Esrrb gene locus, and the primer position 
for ChIP-qPCR. Lower panel: H3K4me3 ChIP-qPCR for two Epop KO clones compared to control cells. The 



values indicate mean ± SD of two biological replicates. D, E) H3K4me3 ChIP-qPCR at the Tet and Esrrb 
locus, as well as several PRC2 target genes in mESCs upon retinoic acid treatment. Values show mean ± 
SD of duplicates. (* p < 0.05, Student’s t-test) F) Heatmap for RT-qPCR data showing the change of 
differentiation markers upon retinoic acid treatments in control and two Epop KO cells lines. Values indicate 
log2 mean expression change of two biological replicates relative to control cells at day 0. G) Western blot of 
EPOP expression during retinoic acid treatment of wildtype mESCs. Actin is shown as loading control. H) 
RNA polymerase II S5 travelling ratio change upon Epop KO in comparison to chemical inhibition of MYC 
(Rahl et al., 2010). The whisker blots represents the distribution of the travelling ratios with lower quartile, 
median and upper quartile and 5% and 95% whiskers. The P values were calculated by a Kolmogorov–
Smirnov test. 

 

  



Figure S4 

 

Figure S4: EPOP directly interacts with Elongin BC and USP7, related to Figure 3. 
A) Human EPOP either expressed in bacteria or in HeLa-S cells interacts with Elongin BC heterodimer 
(GST-Elongin C/His-Elongin B = GST-BC).  No interaction was observed with GST-Elongin B or GST-
Elongin C alone. B) GST-Pulldown experiments of pieces of human EPOP expressed in HeLa-S cells using 
GST-BC as bait. The coomassie staining is representative for B) and C). C) GST-Pulldown experiment as in 
B) with EPOP possessing point mutations of the leucines (L40A, L307A) at two putative BC-Boxes. D) Semi-



endogenous coimmunoprecipitation of EPOP BC-Box mutants in HeLa-S cells (extended version of Figure 
3D). E) Cellular fractionation of HeLa-S cells expressing empty vector, wildtype (WT) or L40A mutant EPOP. 
F) Cellular fractionation of HeLa-S cells expressing pieces of EPOP. G) Quantification of SUZ12 distribution 
in E) and F). H) Schematic overview of USP7, EPOP and Elongin B and C domain structure and the 
presence of a P/AXXS motif, which is the typical USP7 binding motif (Sheng et al., 2006). I) Coexpression-
coupled GST-Pulldown experiment using EPOP pieces or Elongin B and C fused to GST as bait and His-
Flag USP7 as prey. PRR = Proline-rich region. The domain structure for EPOP is described in (Liefke and 
Shi, 2015). A representative coomassie staining is shown. J) Western blotting of glycerol gradient fractions of 
a Flag-purified mouse EPOP complex from mESCs. 
  



Figure S5 

 

Figure S5. Creation of Tceb2 and Usp7 KO mESCs and associated ChIP-Seq experiments, related to 
Figure 4 and 5. 

A) Creation of Tceb2 KO mESCs using CRISPR/Cas9. Genomic DNA of clone 1 was amplified, incorporated 
into pENTR/D vector and sequenced. Western blots of proteins and histone marks in those KO cells 
compared to control cells are shown. Actin or H3 is shown as loading control. B) Heatmap and promoter 
profiles of Elongin B ChIP-Seq in Control versus Tceb2 and Epop KO cells. Two biological replicates are 
shown for the Elongin B ChIP-Seq in Epop KO cells. C) Creation of Usp7 KO cells using CRISPR/Cas9. 
Genomic DNA was analyzed as described in A). Western blots show level of proteins and histone marks in 
those KO cells compared to control cells. Actin or H3 is shown as loading control. D) Left: H3K4me3 
promoter profiles in control versus Tceb2 or Usp7 KO cells. Up right: Browser view of H3K4me3 in Tceb2 KO 
cells compare to control cells at the Tet1 and Esrrb locus. Down right: H3K4me3 ChIP-qPCR at the Tet1 and 
Esrrb gene locus with two Tceb2 KO clones compared to control cells, with primers described in Figure 4C. 
The values represent mean ± SD of two biological replicates. The P-values in B) and D) were calculated by 
ANOVA. 



Figure S6 

 

Figure S6: EPOP is involved in cancer cell proliferation, Related to Figure 7. 

A) Presence of pluripotency factors (Whyte et al., 2013) (Kim et al., 2010) at the Epop (E130012A19Rik) 
gene locus in mESCs. B) Bright field microscopy of affected cancer cell lines (Figure 7F) infected with 
scrambled or shRNA #2 for EPOP. Scale bars indicate 20 µm. C) Cell proliferation of SH-SY5Y cells upon 



infection with EPOP CRISPR constructs. The functionality of the CRISPR construct was validated by 
Western and sequencing of an amplified PCR product. The asterisk in the Western indicates an unspecific 
band. D) Cell proliferation of SH-SY5Y cells upon knockdown of Elongin B and C, validated by qPCR and 
Western. Actin is shown as loading control in C) and D). E) Bright field microscopy of SH-SY5Y cells infected 
with shRNAs for TCEB1 and TCEB2 or control shRNA. The scale bars indicate 20 µm. F) Genome browser 
view of public MYC ChIP-Seq data from cancer cells (ENCODE Project Consortium, 2012) at the EPOP 
(C17orf96) gene locus. G) Gene expression of Myc and Epop (E130012A19Rik) during mouse 
lymphomagenesis (Sabo et al., 2014). The dashed line indicates the average Epop expression in controls. H) 
Correlation of gene expression of MYC and EPOP using data from TCGA. The left panel shows all samples 
and the right panels show Colon (n = 329, R = 0.68, P = 1.86 x 10-9) and Lung Squamous Cell Carcinoma 
(LSCC) (n = 553, R = 0.31, P = 5.66 x 10-9) as tissue specific examples. The P-value was calculated via 
ANOVA. I) ChIP-qPCR in SH-SY5Y cells at the MYC locus. The values indicate mean ± SD of duplicates. (* 
p < 0.05, Student’s t-test) J) RT-qPCR analysis of expression of EPOP and MYC upon knockdown of EPOP 
and MYC. The values represent mean ± SD of duplicates. (* p < 0.05, Student’s t-test)  K) Heatmaps of 
H3K4me3 change in SH-SY5Y cells upon EPOP knockdown compared to presence of MYC from different 
cancer cells. The heatmaps are sorted after the H3K4me3 changes as described in Figure 7H.  L) RT-qPCR 
analysis of several genes with affected H3K4me3 levels in SH-SY5Y cells. The data are presented as mean 
± SD of duplicates.  
  



Supplemental Tables 

Table S1: Gene ontology analyses, Related to Figure 1, 6, and 7. 

Table S2: Used dataset and statistics for the enrichment analysis of chromatin regulators 
at PRC2 targets genes or genes with broad H3K4me3 domain, Related to Figure 1A. 

Table S3: Other ChIP-Seq data used for bioinformatics, Related to Figure 1,2 and 7 

Table S4: Used data and statistics for microarray analysis, Related to Figure 6F. 

Table S5: Analysis of average gene expression changes in cancer relative to normal 
tissues, using data from TCGA, Related to Figure 7A. 

Table S6: Correlation coefficient of proliferation index versus EPOP expression in TCGA 
cancer samples, Related to Figure 7C. 

Table S7: PCR Primers, Related to “Experimental Procedures, ChIP, ChIP-Seq, RNA-Seq, 
qPCR”. 

  



 

Extended Experimental Procedures 

Cell culture 

Retinoic acid treatment of mESCs was performed over 6 days with at concentration of 1 

µM. DRB and Triptolide were applied at a concentration of 100 and 10 µM, respectively, 

for 1 hour. Neuronal monolayer differentiation was performed as described by (Ying et al., 

2003). In detail, ES cells were washed twice in PBS and plated onto gelatinized tissue 

culture flasks at a density of 1 × 104 cells/cm2 in N2B27 serum-free medium. Medium was 

changed every day. For the cancer cell proliferation assays 100.000 cells were seeded two 

days after selection into a 6 well plate and cell numbers were counted every two days. 

ChIP-Seq, ChIP-qPCR and RT-qPCR experiments in SH-SY5Y were performed two days 

after selection. 

Plasmids 

ORFs of wildtype human EPOP (C17orf96), mouse Epop (E130012A19Rik), and shRNA 

constructs for mouse Epop were obtained as described (Liefke and Shi, 2015). 

Mutageneses were performed via PCR based cloning strategies. ORFs for human Elongin 

B and C (TCEB2 and TCEB1) were cloned from cDNA from HeLa-S cells. Lentiviral 

shRNA constructs for human EPOP (shRNA #1: AGCACCGCTGGAGCCTTTAAT, shRNA 

#2: CGAGGTGCGAGAGGAACAATT), human TCEB1 (GAAACCAATGAGGTCAATTT) 

and human TCEB2 (shRNA #1: GTGTGGCTTCACCAGTCAAAC, shRNA #2: 

CAGCACGGTGTTCGAACTGAA) were obtained by cloning hairpins, into the pLKO.1 

vector. Lentiviral shRNA constructs for MYC were obtained from Dharmacon (shRNA #1 

TRCN0000039640, shRNA #2: TRCN0000039641). SHC202 (Sigma Aldrich) was used as 



shRNA control. CRISPR knockouts were obtained using lentiCRISPRv2 (Addgene 

#52961) (Sanjana et al., 2014), using following guide RNA targets: Epop 

(E130012A19Rik): TACGCCCCTGAAGCCGCGTC, EPOP (C17orf96): 

CGCCCCGGAAGCCGTGTCGG, Tceb2: GAACTGAAGCGCATCGTCGA, Usp7: 

GGTTGCCTCGGAGCGCCAAC. Single cell clones were obtained via limited dilution and 

validated by Western blotting and sequencing. A plasmid without functional guide RNA 

sequences was used as CRISPR control. The CRISPR target sequence was modified by 

synonymous mutagenesis in mouse EPOP rescue constructs. Rescue and overexpression 

experiments were performed using untagged EPOP. 

Antibodies 

Antibody 1 (Ab1) for EPOP was obtained as described (Liefke and Shi, 2015). Antibody 2 

(Ab2) was a kind gift of the Luciano Di Croce lab (CRG, Barcelona, Spain). Antibody 3 

(Ab3) was derived by injecting rabbits with a purified GST-fusion protein of mouse EPOP 

containing amino acids 59-229. The antibody was extracted from the obtained serum by 

affinity purification. Ab3 is available from Active Motif with the catalog number #61753. 

Experiments in human cancer cells were performed with Ab3. Other used antibodies were 

SUZ12 (Santa Cruz, sc-46264/sc-271325), p300 (Santa Cruz, sc-585), Tubulin (Sigma, 

T9026), Actin (abcam, ab3280), Histone H3 (abcam, ab1791), H3K27me3 (Millipore, 07-

449), H3K4me3 (Millipore, 04-745), H3K4me2 (Millipore, 07-030), H3K4me1 (abcam, 

ab8895), H3K36me3 (abcam, 9050), Flag-M2 (Sigma Aldrich, F1804), Flag-M2 beads 

(Sigma Aldrich, A2220). HA (Covance, MMS-101P), HA Beads (Santa-Cruz, sc-7392), 

RNA polymerase II (Santa Cruz, sc-899), RNA polymerase II S5 (Covance, MMS-128P; 

BioLegend, 904001), H2Bub (Cell Signaling, 5546S), Elongin B (abcam, ab168836 



(Western/ChIP), Santa Cruz, sc-23407 (Western)), Elongin C (Santa Cruz, sc-1559), 

POU5F1/OCT4 (Santa-Cruz, sc-5279), Secondary Mouse Anti-Rabbit IgG, Light Chain 

specific (Jackson Laboratories, 211-032-171)(Western endogenous CoIP), USP7 (Bethyl, 

A300-033A).  

Bioinformatics analyses 

ChIP-Seq data were aligned to mouse genome mm9 or human genome hg19, using 

Bowtie 1.0 (Langmead et al., 2009) with n = 1 and m = 3 as parameters. Normalized and 

subtraction bigwig files were obtaining using deepTools (Ramirez et al., 2014). Analysis of 

ChIP-Seq data was done using the Cistrome platform (Liu et al., 2011a) (Liefke and 

Borggrefe, 2014) or by using custom R scripts for Bioconductor (Gentleman et al., 2004). 

Significant peaks were called using MACS (p < 1e-05). The significance of the ChIP-Seq 

profiles were evaluated by applying ANOVA on normalized ChIP-seq tag numbers from 

control and KO cells at regions relative to promoters (H3K4me3-Promoter: -1000 to +1000; 

H3K4me3-Downstream: +2500 to +10000, H2Bub, USP7: 0 to +1000, EPOP: -1000 to 

+1000, Elongin B: -500 to +500). The RNA Polymerase II traveling ratios were calculated 

by dividing the tag density at the promoter region (-250 to +250) by the tag density in the 

gene body (+1000 to TTS). Only genes with at least 2000 bp length were included into the 

analysis. The H3K4me3 breadth (in kb, Figure S1A) at a certain gene was determined as 

the number of 10 bp bins from -2500 to +10000 bp relative to the TSS that contain at least 

one H3K4me3 tag, divided by 100, using H3K4me3 data from control cells (GSM2027596). 

The top 1000 genes with broadest H3K4me3 in mESCs were defined as genes with broad 

H3K4me3 domain (“broad”). The H3K27me3 levels (Figure S1A) were evaluated by 

counting the H3K27me3 tags from -2500 to +2500 at each promoter, using data from 



(Mikkelsen et al., 2007). The enrichment of chromatin regulators (Figure 1A, Table S2) 

was calculated by dividing the average tag numbers from -2500 to +10000 at broad 

H3K4me3 possessing genes or PRC2 target genes by the average tag numbers at all 

genes. RNA-Seq analysis was performed using Tophat and Cufflinks (Trapnell et al., 

2012). Microarray data (Table S4) were normalized via RMA using Bioconductor. Gene set 

enrichment analyses (GSEA) (Subramanian et al., 2005)  were performed with standard 

settings with PRC2 target genes defined as described (Liefke and Shi, 2015). For cancer 

gene expression analysis (Table S5) the data (PANCAN gene expression, Filename: 

HiSeqV2_PANCAN-2015-02-15.tgz) were downloaded from the UCSC Cancer Genomics 

Browser (Cline et al., 2013). Tissues with 5 or less samples were excluded from the 

analysis. Metastatic or recurrent tumors were considered as cancer samples. The average 

expression of eleven proliferation associated genes (BIRC5, CCNB1, CDC20, NUF2, 

CEP55, NDC80, MKI67, PTTG1, RRM2, TYMS, UBE2C) (Nielsen et al., 2010) of a 

specific sample was used as proliferation index. The Kaplan-Meier survival plots were 

obtained as described (Gyorffy et al., 2010) using relapse free survival (RFS) as measure 

and auto-selected cut-off with following probes: EPOP (C17orf96): 228066_at, TCEB1: 

202823_at, TCEB2: 200085_s_at. Gene ontology analyses were performed using DAVID 

or GREAT (Huang da et al., 2009) (McLean et al., 2010). 

Complex purification, Glycerol Gradient fractionation and Mass spectrometry  

Flag-HA-tagged human or mouse EPOP was expressed after retroviral infection of HeLa-S 

or mESCs, respectively. Nuclear extract was prepared from the established stable cell 

lines, and the complex was purified using anti-Flag (M2) conjugated agarose beads 

(Sigma, A2220), followed by anti-HA conjugated agarose beads (Santa Cruz, sc-7392) by 



incubation in TAP buffer (50 mM Tris-HCl pH 7.9, 100 mM KCl, 5 mM MgCl2, 10% 

glycerol, 0.1% NP-40, 1mM DTT, and protease inhibitors) for 4h and 3 times washing with 

TAP buffer. Complexes were eluted with Flag or HA peptides, respectively. For glycerol 

gradient fractionations Flag-purified complexes were layered on an 11-40% glycerol 

gradient and ultracentrifuged at 55.000 rpm for 10 h. 200μl fractions were subsequently 

collected manually and analyzed by western blotting, silver staining or mass spectrometry. 

For mass spectrometry the samples were TCA precipitated and peptides were identified 

via LC-MS/MS at the Taplin Core facility.  

Coimmunoprecipitation experiments and Pulldown experiments 

For coimmunoprecipitation experiments whole cell extract were made using CHAPS buffer 

(Tris 50 mM pH 7.8, 350 mM NaCl, 1 mDTT, 10 mM CHAPS) and samples were incubated 

with the appropriate antibody for 4 h at 4 °C and precipitated using protein A beads. After 

washing the beads with CHAPS buffer, the precipitated proteins were visualized by 

Western blotting. 

For pulldown experiments using Elongin BC dimers as bait, GST-Elongin C and His-

Elongin B were coexpressed in BL21 cells and batch purified before the experiments. 

Bacterial expressed His-Flag-EPOP was expressed in BL21 cells at 16C with 0.1 M IPTG 

and purified using Ni-NTA beads. For other experiment Flag-HA constructs of the 

respective human EPOP piece or mutant were expressed in HeLa-S cells. Whole cell 

extracts were made using CHAPS buffer and incubated with glutathione-beads 

immobilized GST-Elongin BC or GST alone for 2 hours and washed three times with 

CHAPS buffer. Bound proteins were visualized by Western blotting using a Flag antibody.  



Coexpression coupled GST-Pulldown experiments (Figure S4I) were performed as 

described (Liefke and Shi, 2015) with following modifications: Protein were coexpressed 

with 0.1M IPTG in BL21 cells cultured at 20 °C. For washing a CHAPS buffer containing 1 

M NaCl was used. GST-fusion proteins of human EPOP (NTR: 1-56, PRR: 57-237, CR: 

238-285, CTR: 286-379), Elongin B and C were used as bait and His-Flag-tagged full-

length or specific domains of human USP7 as prey. 

Cellular Fractionation 

Cellular fractionations were performed using “Subcellular Protein Fractionation Kit for 

Cultured Cells“ ( Pierce, #78840) according to manufacturer’s instructions, followed by 

Western blotting. A 1:3 sample dilution was used for Western blotting to detect histone 

modifications. Protein levels were quantified using Photoshop. 

Statistical analysis 

Statistical analyses were performed using unpaired Student’s t-tests (qPCRs, comparison 

of gene groups), Kolmogorov–Smirnov tests (Travelling ratios), ANOVA (Regression, 

Significance of ChIP-Seq data), hypergeometric tests or were calculated by the GSEA, 

GREAT, DAVID or Cistrome tools. 
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