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1 Acronyms
cDNA complementary DNA

gDNA genomic DNA

RDD RNA-DNA difference

RRD RNA-RNA difference

SNP Single nucleotide polymorphism

SNV Single nucleotide variant
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2 JACUSA internals

2.1 Estimating parameters of the Dirichlet-Multinomial
Let D = {x1,xi, . . . ,xN} : i ∈ {1, · · · , N} represent the base count vectors in N replicates and let xi be
identically and independently distributed then α can be estimated from D by maximum likelihood estimation
of L:

L(α;D) = p(D|α) =
∏
i

p(xi|α)

We estimate α by the Newton-Raphson method ([1]) that optimizes the log-likelihood function log p(D|α):

ni =
∑
k

nik

p(D|α) =
∏
i

p(xi|α)

=
∏
i

(
Γ(

∑
k αk)

Γ(ni +
∑

k αk)

∏
k

Γ(nik + αk)

Γ(αk)

It can be shown that one Newton step is defined as:

αnew = αold −H−1g (1)

where H−1 is the inverted Hessian matrix and g is the gradient of the log-likelihood function:

gk =
d log p(D|α)

dαk
(2)

=
∑
i

Ψ(
∑
k

αk)−Ψ(
∑
k

nik +
∑
k

αk) + Ψ(nik + αk)−Ψ(αk) (3)

where, Ψ(y) =
d log Γ(y)

dy
(4)

Termination of the algorithm is ensured by setting a lower bound δ on the difference of the log-likelihood
functions with new and old α parameter vectors:

log p(D|αnew)− log p(D|αold) ≥ δ

We initialize the algorithm with the method of moments estimator of p. In some cases, the first Newton
step might create non-admissible α parameter vector where αk < 0 for some k. In such case, we restart the
Newton-Rhapson and choose the lowest base call frequency observed for each base as the new starting values
as suggested in [2].

3 in silico Benchmark

3.1 Simulation of in silico data
In the following, we will provide additional technical details on how the benchmark data set was designed (see Figure 1).
In order to enable a feasible comparison of variant callers, we define a common search region based on the generated
BAM files. Apart from coverage requirements, we aim to match the sum of TP, TP, TN, and FN among all variants
callers. In the gDNA vs. cDNA setup we remove all gDNA variants from the search region according to the general
approach to detect RNA editing sites discussed above. Finally, we filter the set of implanted variants. When no
replicate information is available, we require that at least two reads harbouring the same variant allele are present.
In the other case, the variant base needs to be identified in each replicate.
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Figure 1: Detailed description of data setup for the in silico benchmark. Generation of base change frequencies
to create SNPs and SNVs in cDNA samples. Exemplified is the generation of SNP sites for one cDNA sample
and 15 BAM files. Candidate regions with at least 5 reads covered from all 31 BAM files (1 gDNA + 3x5
cDNA I + 3x5 cDNA II) are extracted. 30,000 polymorphic and 30,000 non-overlapping variants site are
sampled from candidate regions. Base change frequencies are sampled from a Beta distribution B(α, β). For
each site i a target frequency Fi :∈ I from an interval I and a shape parameter S : {10, 50, 100} is sampled.
With Fi = 1 − Fi, the Beta distribution B(Fi · S, Fi · S) is used to create editing frequencies for each BAM
file. In SNP generation all 31 BAM files have the same target frequency Fi per site i but different actual
frequencies fi,j per BAM file. Variant generation is done likewise, with F I

i and F II
i corresponding to target

frequencies of cDNA sample I and II, respectively. To ensure sufficient difference between target frequencies
F I
i and F II

i sampling is performed such that |F I
i − F II

i | > 0.1 is achieved.
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Figure 2: Distribution of target frequencies of implanted variants into RRD benchmark. Editing frequencies
of variants implanted into (a) sample I and (b) sample II. (c) Allele frequencies of SNPs implanted in the
cDNA vs. cDNA benchmark setup.
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Figure 3: (a) shows a density plot of the pairwise target frequency F I
i and F II

i from sample I and II,
respectively. (b) shows the distribution of absolute differences |F I

i − F II
i | of target frequency from sample I

and II.
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Simulation of DNA-seq data

We used ART Version 2.1.8 [3] to simulate paired-end, 2x100nt gDNA reads from chromosome 1 of the human genome
reference (hg19). The following parameters have been used to simulate 30x coverage:

art_illumina -na -i <FASTA> -p -l 100 -f 30 -m 400 -s 30

The DNA FASTQ-file has been mapped with bowtie2 [4] against the whole human genome reference:

bowtie2 --mm -p 16 --local -x <hg19-index>

Simulation of RNA-seq data

We used the FLUX simulator v1.2.1[5], a tool for the simulation of RNA-Seq data, to generate in silico reads for the
human transcriptome of chromosome 1. We used the default parameters but adjusted for the read length and read
number. Subsequently, RNA-seq reads have been splice-aligned with tophat2 v2.0.13 against the whole genome and
transcriptome with the following parameters:

tophat2 -p 10 --read-realign-edit-dist 0 -z0 \
-G Homo_sapiens.GRCh37.75.gff

Reads mappings to other chromosome than 1 have been removed from the final output.

3.1.1 FLUX simulator - parameter file

The FLUX simulator was used to simulate RNA-seq data sets for the in silico benchmarks.
The respective program parameters were taken from http://sammeth.net/confluence/pages/viewpage.action?
pageId=786691. The read length has been adjusted to 100nt and the number of reads has been set to 15,000,000.

5



SAMtools/BCFtools

We employ the software package SAMtools/BCFtools v0.1.19 [6] to predict variants in RNA-DNA and RNA-RNA
comparisons. The following command line arguments are executed as part of our benchmark.

samtools mpileup -Q 20 -q 20 -d 1000 -RDsugIBA \
-f <FASTA> <A.bams> <B.bams> | \
bcftools view -cevI -1 ‘echo <A.bams> | wc -w ‘ -

Subsequently, the results are filtered with the varFilter.pl script, which is included in the SAMtools/BCFtools distri-
bution and is suggested by the online manual to perform post-hoc filtering:

bcftools/vcfutils.pl varFilter -1 0 -4 0.05 -e 0

Following the recommendation in [7], we changed the default value for the end distance bias filter to “-4 0.05”. Finally,
we employ a custom AWK script to extract the LRT1 and LRT2 test statistic from the filtered VCF file. The LRT1,2
test predicts if two groups are significantly different by comparing their allele frequencies (see [6] for details). We used
the LRT1 test-statistic throughout the manuscript but provide the LRT2 results in section 3.4. The subsequent tools
REDItools and MuTect are only applicable in an RDD scenario.

REDItools

We use REDItools-1.0.3 [8] with the following parameters:

python REDItoolDenovo.py -o <OUTPUT_DIR> -i <B.bam> -f <FASTA> \
-t 1 -c 5 -q 20 -e -d -T 6-6 -W -E -r 4

REDItoolDenovo.py does not use gDNA sequencing data to predict RDDs by assuming that putative RNA editing
sites are not polymorphic. For our benchmark this is a valid assumption because we only implant variants into cDNA
samples. Because REDItools only utilizes RNA-seq data, all predictions should be filtered against known genomic
variant sites in real-world examples. This information is typically available through dbSNP [9].

MuTect

MuTect [10] is a popular somatic variant caller. We employ muTect-1.1.4 to predict variants with the following
parameters:

java -Djava.io.tmpdir=~/tmp -jar muTect-1.1.4.jar \
--analysis_type MuTect -nt 1 --enable_extended_output \
--reference_sequence <FASTA> --input_file:normal <A.bam> \
--input_file:tumor <B.bam> -U ALLOW_SEQ_DICT_INCOMPATIBILITY \
-out <OUTPUT>

We supply the cDNA BAM file, which contains the variants, as the tumor input file and the gDNA BAM files as
reference condition.

JACUSA

We call our own software solution with the following parameters:

java -jar JACUSA.jar call-2 -w 10000 -W 1000000 -c 5 -m 20 -d 1000 \
-q 20 -r <OUTPUT> -p 1 -T 0 -a D <A.bams> <b.bams>
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3.2 Benchmark evaluation
We use the ROCR R package [11] to evaluate our benchmark results. ROCR computes, among others, the following
relevant performance measures:

True positive rate (TPR) =
TP

TP + FN

False positive rate (FPR) =
FP

TN + FP

Accuracy =
TP + FP

TP + FP + FN + TN

Precision =
TP

TP + FP

F-score = 2 · precision · TPR

precision+ TPR

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives and false negatives,
respectively.

3.3 Additional results for gDNA vs. cDNA comparison
This section contains additional results for the benchmark represented by Figure 3 in the main text.
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Figure 4: Performance results for gDNA vs. cDNA comparisons. (a) count results and (b) performance
measure. (TP = true positives, FP = false positives, TN = true negatives, FN = false negatives)
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Table 1: Detailed performance results for gDNA and cDNA comparision. Results are sorted by accuracy for
each block of replicates.

# of replicates Variant caller TP TN FP FN TPR Precision Accuracy
1 JACUSA 26,016 72,331 34 1,616 0.9415 0.9987 0.9835
1 REDItools 24,165 72,355 10 3,466 0.8745 0.9996 0.9652
1 SAMtools 23,805 72,362 3 3,826 0.8615 0.9999 0.9617
1 MuTect 23,137 72,362 2 4,495 0.8373 0.9999 0.9550
2 JACUSA 26,929 71,220 26 1,519 0.9466 0.9990 0.9845
2 SAMtools 23,716 71,245 1 4,732 0.8337 1.0000 0.9525
3 JACUSA 26,949 71,602 6 1,154 0.9589 0.9998 0.9884
3 SAMtools 22,996 71,608 0 5,107 0.8183 1.0000 0.9488
4 JACUSA 26,750 71,918 4 1,057 0.9620 0.9998 0.9894
4 SAMtools 22,010 71,922 0 5,797 0.7915 1.0000 0.9419
5 JACUSA 26,555 72,231 4 949 0.9655 0.9998 0.9904
5 SAMtools 20,917 72,235 0 6,587 0.7605 1.0000 0.9340
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Figure 5: Performance results for gDNA vs. cDNA comparisons with differing number of replicates. (a)
True positive rate and (b) False positive rate for increasing number of replicates. (c) True positive and False
positive rate and (d) precision and recall for 1 replicate. (e) True positive rate stratified by variant frequency.
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3.4 Additional results for cDNA vs. cDNA comparison
This section contains additional results for the benchmark represented by Figure 4 in the main text.
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Figure 7: Performance results for cDNA vs. cDNA comparisons. (a) count results and (b) performance.
(TP = true positives, FP = false positives, TN = true negatives, FN = false negatives)

Table 2: Detailed performance results for cDNA and cDNA comparisions. Results are sorted by accuracy for
each block of replicates.

# of replicates Variant caller TP TN FP FN TPR Precision Accuracy
1 JACUSA 22,134 65,797 4,962 7,105 0.7570 0.8169 0.8793
1 SAMtools-lrt 13,022 65,066 5,693 16,217 0.4454 0.6958 0.7809
1 SAMtools-lrt2 8,597 68,183 2,576 20,642 0.2940 0.7694 0.7678
2 JACUSA 23,750 67,206 4,133 4,910 0.8287 0.8518 0.9096
2 SAMtools-lrt 12,994 64,802 6,537 15,666 0.4534 0.6655 0.7780
2 SAMtools-lrt2 8,378 69,047 2,292 20,282 0.2923 0.7853 0.7743
3 JACUSA 23,748 68,879 3,056 4,316 0.8462 0.8860 0.9263
3 SAMtools-lrt2 7,729 70,038 1,897 20,335 0.2754 0.8030 0.7777
3 SAMtools-lrt 12,281 65,328 6,607 15,782 0.4376 0.6503 0.7761
4 JACUSA 23,948 69,795 2,750 3,506 0.8723 0.8970 0.9374
4 SAMtools-lrt2 7,526 70,525 2,019 19,928 0.2741 0.7885 0.7805
4 SAMtools-lrt 8,143 69,667 2,878 19,311 0.2966 0.7392 0.7781
5 JACUSA 23,627 70,927 2,169 3,276 0.8782 0.9159 0.9455
5 SAMtools-lrt2 6,953 71,356 1,740 19,950 0.2584 0.8002 0.7831
5 SAMtools-lrt 7,560 70,499 2,597 19,342 0.2810 0.7443 0.7806
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Figure 8: Performance results for cDNA vs. cDNA comparisons with differing number of replicates. (a)
True positive rate and (b) False positive rate for increasing number of replicates. (c) True positive and
False positive rate and (d) precision and recall for 1 replicate. (e) True positive rate stratified by the target
frequency difference and shape parameter of the Beta-distribution.
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3.5 Derived thresholds from in silico benchmark
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Figure 9: Optimal JACUSA (a) and SAMtools/BCFtools (b) score thresholds for different number of repli-
cates and benchmark types. We optimized the score threshold by maximizing the benchmark accuracy. Each
point represents one variant caller run with the given number of replicates and the corresponding benchmark
setup. We defined the thresholds based on the mean of each combination of benchmark setup and number
of replicates (for HEK-293 data with 2 replicates: gDNA vs. cDNA = 1.15 and cDNA vs. cDNA = 1.56).

Table 3: Optimal thresholds for REDItools and MuTect for gDNA vs. cDNA comparisons when no replicates
are available. Last column shows the average threshold.

Variant caller Thresholds (3 runs) Average
MuTect 6.300519 ; 6.300457 ; 6.300536 6.30
REDITools 0.311362 ; 0.311304 ; 0.311427 0.31
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3.6 Running time analysis
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Figure 10: Running time for tested variant caller depending on benchmark type and number of replicates.
REDItools are not shown because they perform an order of magnitude worse (3,103, 3,064, and 3,020 [min-
utes]).
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4 Analysis of HEK cell line

4.1 Sequencing statistics

Table 4: Read statistic for HEK-293 sequence data. Data has been deposited under SRP050149. cDNA_i :
i ∈ {1, 2} indicates technical replicates. Biological replicates are distinguished by the suffix e.g.: siADAR-j
(j ∈ {1, 2}) of the Name column in the table.

Name Library Raw reads Mapped reads Uniquely mapped reads
gDNA_1 gDNA 235,832,142 206,323,227 (87%) 176,996,398 (75%)
gDNA_2 (paired) gDNA 467,110,994 432,618,527 (93%) 382,748,613 (82%)
gDNA_3 (paired) gDNA 465,522,096 430,904,551 (93%) 381,544,943 (82%)
cDNA_1 siADAR-1 cDNA 20,676,171 19,854,820 (96%) 14,359,177 (69%)
cDNA_1 siADAR-2 cDNA 22,791,324 22,281,537 (98%) 17,409,451 (76%)
cDNA_1 siApo-1 cDNA 187,41,904 17,163,038 (92%) 12,232,714 (65%)
cDNA_1 siApo-2 cDNA 21,097,669 20,572,103 (98%) 16,220,403 (77%)
cDNA_1 untr-1 cDNA 23,573,782 23,073,493 (98%) 16,982,923 (72%)
cDNA_1 untr-2 cDNA 19,930,282 19,317,808 (97%) 15,629,933 (78%)
cDNA_2 siADAR-1 cDNA 28,415,635 27,638,365 (97%) 19,939,442 (70%)
cDNA_2 siADAR-2 cDNA 40,123,055 39,206,824 (98%) 30,546,657 (76%)
cDNA_2 siApo-1 cDNA 25,012,075 23,789,799 (95%) 16,857,041 (67%)
cDNA_2 siApo-2 cDNA 21,512,666 20986478 (98%) 16,497,346 (77%)
cDNA_2 untr-1 cDNA 30,348,463 29,699,687 (98%) 21,759,145 (72%)
cDNA_2 untr-2 cDNA 28,432,782 27,700,311 (97%) 22,311,131 (78%)
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Figure 11: Read counts for sequenced RNA samples. cDNA_i : i ∈ {1, 2} indicates biological replicates
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4.2 Knockdown statistics
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Figure 12: FPKM values of genes under study for each treatment in HEK-293 cells. (FPKM values were
calculated with cufflinks. Error bars represent lower and upper bound of the 95% confidence interval of the
abundance.)

4.3 Optimization of TopHat2 mismatch parameters for RNA-seq mapping
In order to study the impact of mismatches on the number of discovered editing sites we used JACUSA to identify
RDDs on sets of reads with increasing number of allowed mismatches (1-10). We used the fraction of identified
A → G sites as a gold standard and identified 5 as an adequate value for the number of allowed mismatches (see
Figure 13).
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Figure 13: Depicted is the fraction of base changes dependent on the number of allowed mismatches on
chromosome 1. We identified 5 mismatches as the optimal value to maximize the fraction of A → G sites
among all treatments.
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4.4 Marking PCR duplicates
We used MarkDuplicates from the picard tools (v1.105) to mark PCR-duplicates in gDNA and cDNA BAM files with
the default parameter settings. Reads marked as PCR-duplicates are filtered by JACUSA (see 4.5).

4.5 JACUSA command line options and post-processing
We used the following command line options to identify RDDs with JACUSA in our HEK-293 samples:

java -jar JACUSA.jar call-2 \
-s -c 2 -P U,S -p 10 -W 1000000 \
-u DirMult -F 1024 --filterNM_1 5 --filterNM_2 5 \
-a D,M,Y,H:1 \
-T 1.15
-r $OUTPUT $DNA $RNA

The following options have been used to detect RRDs:

java -jar JACUSA.jar call-2 \
-s -c 2 -P S,S -p 10 -W 1000000 \
-u DirMult -F 1024 --filterNM_1 5 --filterNM_2 5 \
-a D,M,Y \
-T 1.56
-r $OUTPUT $RNA1 $RNA2

In brief, we retain reads that have a mapping quality ≥ 20 and are no potential PCR-duplicates. Furthermore, we
require reads to harbor at most 5 mismatches and we require variant sites to be covered by at least 2 reads.

JACUSA output is processed by a custom R package “JacusaHelper” to infer the editing and to filter out variant
sites that are covered by less than 10 reads in the gDNA BAM or less than 5 reads in each of the cDNA BAM files.

All necessary details are found in the JACUSA repository https://github.com/dieterich-lab/JACUSA. Please
consult the README file and the subfolder "manual".
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4.6 Analysis of sites rejected by filters
Figure 14 provides an overview on the different filtering mechanisms and how often they become effective.
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Figure 14: Shown is the distribution of excluded sites for each sample that comply with the coverage and
test statistic thresholds but are rejected by some filter (see Table below). The labels ‘multiple’ and ‘unique’
indicate if a site has been excluded due to the occurrence of multiple filters (e.g.: filters B and H) or due to
a single filter.

JACUSA filter Description
B Filters variants that are enriched at the Start/End of reads.
I Filters variants that are in the vicinity of an INDEL.
D This filter combines B, I, and additionally filters variants that are close to a

splice site.
M Limit the maximum allowed alleles per variant site. In a diploid cell at most

two alleles are expected.
Y Filter variant calls within homopolymers.
H To distinguish RNA editing sites from SNPs, polymorphic read stacks in

gDNA are filtered out.
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4.7 Properties of variants
Figure 15 provides an overview of the identified A→ G sites from all three RDD comparisons.
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Figure 15: Overlap of A→ G editing sites identified in each treatment by comparing gDNA vs. cDNA.

4.8 Comparison of RDD sites with other genomic features
RDD site overlap with genomic features

We assessed all identified variants by JACUSA by their genomic location and respective overlap with genomic features.
The majority of our predicted A→ G editing sites (92.9%, Fisher’s Exact Test: p < 0.0005) overlap with Alu elements,
a previously described target of RNA editing (see Figure 16a). This enrichment is not seen for other base substitutions
or candidate editing events. The majority of A → G editing sites (91.3%) in the untreated sample overlaps with
protein coding genes while the second highest overlapping gene type is lincRNA with 5.6% and the third frequent
(3.1%) gene type is pseudogene (Figure 16b). The distribution of A→ G sites is strongly affected by the experimental
condition (see first row in Figure 16b). Intriguingly, the total counts for other base substitutions (e.g. C → T ) do not
vary across different treatments (siADAR, siApo and untreated; Figure 16b). Next, we profiled the location of editing
sites within the gene body of protein coding genes. The overlap of one site with a particular category of a gene is
counted only once. Most of the editing sites (41.5%) are found within intronic sequences followed by 23.1% within
exons (see Figure 16c). The genetic variant annotation tool snpEff revealed that only 100 A→ G sites (< 1%) were
located within coding sequences of which 72 sites were missense variants potentially affecting the amino acid sequence
of the respective protein product. We observed an increase of editing towards the 3’ end (20.1% of edited sites) of
a protein coding gene while < 1% of the editing sites are located in the 5’-untranslated region (5-UTR). In order to
account for bias in annotating 5’- and 3’- UTRs, we extracted 5kb up- and downstream of protein coding genes and
the enrichment towards the 3’ end was persistent with 3.0% for upstream and 11, 7% for downstream editing sites.
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Figure 16: (a) Overlap of variants (A→ G or other base changes) detected in RDD comparisons that overlap
Alus or other repeats. (b) Distribution of variants overlapping gene types. (c) Distribution of variants along
specific parts of protein coding genes. (d) Editing profile along protein coding genes and lincRNA.

Finally, we compared the editing profiles of protein coding genes and lincRNA based on the distribution of editing
sites along length normalized genes (see Figure 16d). The enrichment of editing towards the 3’ end is distinct to
A→ G modification and protein coding genes (n = 11,208 editing events). The editing profile for lincRNA appears
to have an opposite distribution with editing enriched towards the 5’ end (n = 723 editing events).
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Figure 17: Detailed description of genetic and repeat annotation of RDDs that have been identified in
untreated HEK-293 cells. Sites that overlap more than one repeat are discarded. a) compares the absolute
counts for A→ G and other variants. b) shows the fraction of A→ G sites.
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Table 5: Details for RDD sites identified by SAMtools/BCFtools in untreated HEK-293 cells.

Variants in: Alu repeat non Alu repeat no repeat
Total A→ G Total A→ G Total A→ G

Upstream 420 415 (98.8%) 8 4 (50%) 23 4 (17.4%)
Protein Coding
5-’UTR 11 11 (100%) 0 0 1 0
CDS 47 47 (100%) 4 1 (25%) 127 34 (26.8%)
Intron 5,465 5,438 (99.5%) 372 263 (70.7%) 333 149 (44.7%)
3’-UTR 2,625 2,599 (99%) 42 9 (21.4%) 122 58 (47.5%)

Downstream 1,608 1,601 (99.6%) 40 33 (82.5%) 42 24 (57.1%)
Intergenic/other 1,213 1,198 (98.8%) 283 168 (59.4%) 196 70 (35.7%)
Total 11,389 11,309 (99.3%) 749 478 (63.8%) 844 339 (40.2%)
Unique 9,744 9,684 (99.4%) 734 475 (64.7%) 713 286 (40.1%)

Table 6: Details for RDD sites identified by MuTect in untreated HEK-293 cells.

Variants in: Alu repeat non Alu repeat no repeat
Total A→ G Total A→ G Total A→ G

Upstream 281 281 (100%) 3 1 (33.3%) 19 1 (5.26%)
Protein Coding
5-’UTR 5 5 (100%) 1 0 2 0
CDS 35 35 (100%) 6 2 (33.3%) 174 36 (20.7%)
Intron 3,691 3,682 (99.8%) 237 170 (71.7%) 230 97 (42.2%)
3’-UTR 1,836 1,828 (99.6%) 25 8 (32%) 117 51 (43.6%)

Downstream 1,060 1,059 (99.9%) 26 20 (76.9%) 25 15 (60%)
Intergenic/other 765 757 (99%) 195 128 (65.6%) 157 54 (34.4%)
Total 7,673 7,647 (99.7%) 493 329 (66.7%) 724 254 (35.1%)
Unique 6,518 6,497 (99.7%) 483 324 (67.1%) 604 215 (35.6%)
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Table 7: Details for RDD sites identified by REDItools in untreated HEK-293 cells.

Variants in: Alu repeat non Alu repeat no repeat
Total A→ G Total A→ G Total A→ G

Upstream 454 446 (98.2%) 24 4 (16.7%) 52 7 (13.5%)
Protein Coding
5-’UTR 11 11 (100%) 3 0 3 0
CDS 55 55 (100%) 19 2 (10.5%) 276 54 (19.6%)
Intron 5,397 5,368 (99.5%) 405 242 (59.8%) 392 146 (37.2%)
3’-UTR 3,073 3,033 (98.7%) 112 13 (11.6%) 205 75 (36.6%)

Downstream 1,679 1,669 (99.4%) 47 32 (68.1%) 48 24 (50%)
Intergenic/other 1,260 1,239 (98.3%) 335 184 (54.9%) 231 66 (28.6%)
Total 11,929 11,821 (99.1%) 945 477 (50.5%) 1,207 372 (30.8%)
Unique 10,031 9,947 (99.2%) 878 466 (53.1%) 991 304 (30.7%)

Table 8: Details for RDD sites identified by JACUSA in untreated HEK-293 cells.

Variants in: Alu repeat non Alu repeat no repeat
Total A→ G Total A→ G Total A→ G

Upstream 558 555 (99.5%) 16 6 (37.5%) 54 7 (13%)
Protein Coding
5-’UTR 16 16 (100%) 4 0 4 0
CDS 62 62 (100%) 27 3 (11.1%) 283 42 (14.8%)
Intron 7,378 7,339 (99.5%) 514 346 (67.3%) 449 182 (40.5%)
3’-UTR 3,752 3,709 (98.9%) 81 19 (23.5%) 197 83 (42.1%)

Downstream 2,162 2,152 (99.5%) 54 40 (74.1%) 63 31 (49.2%)
Intergenic/other 1,695 1,673 (98.7%) 404 250 (61.9%) 256 85 (33.2%)
Total 15,623 15,506 (99.3%) 1,100 664 (60.4%) 1,306 430 (32.9%)
Unique 13,336 13,245 (99.3%) 1,054 649 (61.6%) 1,071 364 (34%)

Table 9: Details for RRDs identified by SAMtools/BCFtools in siADAR vs. siAPOBEC3 treated HEK-293
cells.

Variants in: Alu repeat non Alu repeat no repeat
Total A→ G Total A→ G Total A→ G

Upstream 199 190 (95.5%) 5 0 73 2 (2.74%)
Protein Coding
5-’UTR 6 6 (100%) 3 0 28 0
CDS 20 17 (85%) 12 1 (8.33%) 428 12 (2.8%)
Intron 1,795 1,695 (94.4%) 332 62 (18.7%) 673 35 (5.2%)
3’-UTR 1,625 1,551 (95.4%) 83 6 (7.23%) 475 34 (7.16%)

Downstream 740 713 (96.4%) 37 17 (45.9%) 102 11 (10.8%)
Intergenic/other 347 320 (92.2%) 144 50 (34.7%) 133 20 (15%)
Total 4,732 4,492 (94.9%) 616 136 (22.1%) 1,912 114 (5.96%)
Unique 3,827 3,621 (94.6%) 581 135 (23.2%) 1,597 93 (5.82%)
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Table 10: Details for RRDs identified by JACUSA in siADAR vs. siAPOBEC3 treated HEK-293 cells.

Variants in: Alu repeat non Alu repeat no repeat
Total A→ G Total A→ G Total A→ G

Upstream 218 212 (97.2%) 8 1 (12.5%) 46 2 (4.35%)
Protein Coding
5-’UTR 8 8 (100%) 1 0 18 0
CDS 19 19 (100%) 11 0 331 22 (6.65%)
Intron 1,750 1,685 (96.3%) 140 51 (36.4%) 292 31 (10.6%)
3’-UTR 1,900 1,832 (96.4%) 43 9 (20.9%) 299 45 (15.1%)

Downstream 800 782 (97.8%) 30 19 (63.3%) 61 10 (16.4%)
Intergenic/other 324 313 (96.6%) 91 53 (58.2%) 60 16 (26.7%)
Total 5,019 4,851 (96.7%) 324 133 (41%) 1,107 126 (11.4%)
Unique 3,974 3,844 (96.7%) 298 130 (43.6%) 880 101 (11.5%)
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5 RRD sites in Drosophila melanogaster

Table 11: Details for RRDs identified by SAMtools / BCFtools in ADAR0 vs. FM7a strains

Variants
Total A→ G

Protein Coding
5-’UTR 1 0
CDS 316 264 (83.5%)
Intron 453 399 (88.1%)
3’-UTR 61 58 (95.1%)

Intergenic/other 6 3 (50%)
Total 837 724 (86.5%)
Unique 781 674 (86.3%)

Table 12: Details for RRDs identified by JACUSA in ADAR0 vs. FM7a strains

Variants
Total A→ G

Protein Coding
5-’UTR 2 2 (100%)
CDS 383 336 (87.7%)
Intron 530 502 (94.7%)
3’-UTR 77 74 (96.1%)

Intergenic/other 8 6 (75%)
Total 1,000 920 (92%)
Unique 931 857 (92.1%)
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