SERK1/2 Acts as a Partner of EMS1 to Control Anther Cell Fate Determination in Arabidopsis

Supplemental Data

Supplemental Figure S1

A, The schematic structure of the *EMS1* gene and the position of T-DNA insertion in the *ems1-2* mutant. The open frame represents the *EMS1* single exon. B, RT-PCR result showing expression of *EMS1* and *ACTIN2* (*ACT2*, internal control) genes in anthers from wild-type and *ems1-2* (SALK_051989) plants. C, qRT-PCR result showing expression of *EMS1* anthers from wild-type and *ems1-2* (SALK_051989) plants. The *EMS1* gene expression is reduced in *ems1-2* anthers compared with that of wild type.

Supplemental Figure S2

Supplemental Figure S2. Fertilities of wild type, *ems1-1*, *ems1-2*, *serk1-1*, *serk2-1*, *serk1-1 serk2-1*, *ems1-2 serk1-1*, *ems1-2 serk2-1*, *ems1-1 serk1-1 serk2-1* plants.

A and B, The wild type plant showing fully elongated siliques (A) and viable pollen grains in the anther (B). C and D, The strong *ems1-1* mutant plant exhibiting short siliques (C, arrows) and no pollen grains (D). E and F, The weak *ems1-2* mutant plant displaying some short siliques (E, arrow) and a reduced amount of pollen grains from partially sterile anthers (F). G-J, The *serk1-1* mutant (G, H) has a similar phenotype to *serk2-1* (I, J), both showing fully elongated siliques (G, I) and viable pollen grains (H, J). K and L, The *serk1-1 serk2-1* double mutant plant exhibiting short siliques (K) and no pollen grains (L). M and N, The *ems1-2 serk1-1* double mutant plant showing that siliques were short (M, arrows) and there was no pollen in sterile anthers (N). O and P, The *ems1-2 serk2-1* double mutant plant exhibiting some short siliques (O, arrows) and a reduced amount of pollen grains (P). Q and R, The *ems1-1 serk1-1 serk2-1* triple mutant plant showing short siliques (Q, arrows) and no pollen grains (R). Scale bars, 1 cm (A, C, E, G, I, K, M, O and Q); 50 µm (B, D, F, H, J, L, N, P and R).

Supplemental Figure S3

Supplemental Figure S3. Functional redundancy of *SERK1* and *SERK2* in rescuing *ems1-2 serk1-1* male sterile phenotype.

A, Schematic structures of constructs used for transforming *ems1-2 serk1-1*^{+/-} double mutant plants. B, Analysis of plant fertility rescued by *SERK1* and *SERK2* in the *ems1-2 serk1-1* double mutant background. Values are the means of 40 independent lines grown under the same condition.

Supplemental Figure S4

Supplemental Figure S4. Representative MS/MS spectra for identifying *in vitro* auto- and trans-phosphorylation sites in the EMS1 kinase domain.

A, The double-charged phosphopeptide SREPLsINIAMFEQPLLK providing evidence of autophosphorylation Ser-892 at the EMS1 kinase domain. B and C, The triple-charged peptide LGDIVEAtDHFsKK corresponding to Thr-914 and Ser-918 providing evidence of transphosphorylated sites. Arrow and asterisks indicating the detection of the neutral loss of the phosphate on fragments or precursor ions and the phosphorylated sites, respectively. The tryptic peptide was fragmented by CID using LTQ XL Orbitrap MS.

Supplemental Figure S5

Supplemental Figure S5. The simulated structure of the EMS1 LRR domain.

The showing structure was generated by RaptorX (http://raptorx.uchicago.edu/). The 3D model of the EMS1 LRR domain was built based on the crystal structure of BRI1 LRR domain. β -sheets are shown in orange and α helices in red. Two loops are formed by LRR2 (the small loop) and LRR23-25 (the large loop), respectively. The *exs-2* mutation [K(104)N] in the small loop results in the same phenotype as the null mutant *ems1-1*.

Supplemental Figure S6

Supplemental Figure S6. Genotyping of *EMS1:EMS1* transgenic plants in the *ems1-1* mutant background.

A and B, Schematic diagrams showing the *EMS1* gene, the *Ds* location (A), the *EMS1* transgene (B), and primers for detecting *Ds* and the *EMS1* transgene. C, PCR results.

Supplemental Figure S7

	854	8	869	883	892
EMS1_CD	LRRWAMTKRVK	QRDDPERMEES	RLKGFVDQNL	YFL <mark>S</mark> GSRSREI	PL <mark>S</mark> INIAMFEQPLLKVRL
BRI1_CD	GREMRKRRRKK	EAELEMYAEGH	IGNSGDRTANN	TNWKLTGVKEA	AL <mark>S</mark> INLAAFEKPLRKLTF
BRL1_CD	VRKVQKK	EQKREKYIESI	PTSGS	CSWKLSSVPER	PL <mark>S</mark> INVATFEKPLRKLTF
BRL2_CD	VRARRR	DADDAKMLHSI	QAVNSA	TTWKIEKEKEB	PL <mark>S</mark> INVATFQRQLRKLKF
BRL3_CD	-LYRARKVQKK	EKQREKYIESI	PTSGS	SSWKLSSVHEI	PL <mark>S</mark> INVATFEKPLRKLTF
FLS2_CD	TCCKKK	EKKIENSSES-			<mark>S</mark> LPDLDSALKLKRFEP
HAE_CD		MFIAKC	R	KLRALKS-	<mark>S</mark> TLAASKWRSFHKLHF
	914 9	18	930	941	
EMS1_CD	GDIVEAT DHFS	KKNIIGDGGFG	TVYKACLPGE	K <mark>T</mark> VAVKKLSE#	AKTQGNRE
BRI1_CD	ADLLQA <mark>T</mark> NGFH	NDSLIG <mark>S</mark> GGFG	DVYKAILKDG	SAVAIKKLIHV	/ <mark>S</mark> GQGDRE
BRL1_CD	AHLLEA <mark>T</mark> NGFS	AETMVGSGGF	EVYKAQLRDG	SVVAIKKLIRI	ITGQGDRE
BRL2_CD	SQLIEA <mark>T</mark> NGFS	AASMIGHGGFO	EVFKATLKDG	S <mark>S</mark> VAIKKLIRI	LSCQGDRE
BRL3_CD	AHLLEA <mark>T</mark> NGFS	ADSMIGSGGF	DVYKAKLADG	SVVAIKKLIQV	TGQGDRE
FLS2_CD	KELEQA <mark>T</mark> DSFN	SANIIGSSSLS	STVYKGQLEDG	TVIAVKVLNLF	KEFSAESDKW
HAE_CD	SEH-EIADCLD	EKNVIGFGSSO	KVYKVELRGG	EVVAVKKLNKS	SVKGGDDEYSSDSLNRDV
EMS1_CD	FMAEMETLGKV	KHPNLVSLLGY	CS-FSEEKLL	VYEYMVNGSLI	DHWLRNQTGMLEVLDW
BRI1_CD	FMAEMETIGKI	KHRNLVPLLGY	CK-VGDERLL	VYEFMKYG <mark>S</mark> LE	EDVLHDPKKAGVKLNW
BRL1_CD	FMAEMETIGKI	KHRNLVPLLGY	CK-VGEERLL	VYEYMKWGSLE	TVLHEKSSKKGGIYLNW
BRL2_CD	FMAEMETLGKI	KHRNLVPLLGY	CK-IGEERLL	VYEFMQYGSLE	EEVLHGPRTGEKRRILGW
BRL3_CD	FMAEMETIGKI	KHRNLVPLLGY	CK-IGEERLL	VYEYMKYG <mark>S</mark> LE	E TVLHEKT-KKGGIFLDW
FLS2_CD	FYTEAKTLSQL	KHRNLVKILGE	'AWE <mark>S</mark> GKTKAL	VLPFMENGNLE	DTIHGSAAPIGSL
HAE_CD	FAAEVETLGTI	RHKSIVRLWCC	CS-SGDCKLL	VYEYMPNGSLA	ADVLHGDRKGGVVLGW
					1069
EMS1_CD	SKRLKIAVGAA	RGLAFLHHGFI	PHIIHRDIKA	SNILLDGDFEI	PKVADFGLARLISAC

STRRKIAIGSARGLAFLHHNCSPHIIHRDMKSSNVLLDENLEARVSDFGMARLMSAM
AARKKIAIGAARGLAFLHHSCIPHIIHRDMKSSNVLLDEDFEARVSDFGMARLVSAL
EERKKIAKGAAKGLCFLHHNCIPHIIHRDMKS <mark>S</mark> NVLLDQDMEARVSDFGMARLISAL
SARKKIAIGAARGLAFLHHSCIPHIIHRDMKSSNVLLDQDFVARVSDFGMARLVSAL
LEKIDLCVHIASGIDYLHSGYGFPIVHCDLKPANILLDSDRVAHVSDFGTARILGFREDG
PERLRIALDAAEGLSYLHHDCVPPIVHRDVKSSNILLD <mark>S</mark> DYGAKVADFGIAKVG-QMSGS
1073 1076 1077
ESHV <mark>S</mark> T-VIAGTFGYIPPEYGQSARATTKGDVYSFGVILLELVTGKEPTGP-DFKESEGG
DTHL <mark>S</mark> VSTLAGTPGYVPPEYYQSFRCSTKGDVY <mark>S</mark> YGVVLLELL <mark>T</mark> GKRPTDSPDFG-DN
DTHL <mark>S</mark> VSTLAGTPGYVPPEYYQSFRCTAKGDVYSYGVILLELLSGKKPIDPGEFGEDN
DTHL <mark>S</mark> VSTLAGTPGYVPPEYYQSFRCTAKGDVYSIGVVMLEILSGKRPTDKEEFG-D <mark>T</mark>
DTHL <mark>S</mark> VSTLAGTPGYVPPEYYQSFRCTAKGDVYSYGVILLELLSGKKPIDPEEFGEDN
STTA <mark>S</mark> TSAFEGTIGYLAPEFAYMRKVTTKADVFSFGIIMMELMTKQRPTSLNDEDSQD-M
KTPEAM GIAGSCGYIAPEYVYTLRVNEKSDIYSFGVVLLELVTGKQPTDS-ELGDKD
NLVGWAIQKINQGKAVDVIDPLLVSVALKNSQLRLLQIAMLCL
NLVGWVKQHAK-LRISDVFDPELMKEDPALEIELLQHLKVAVACL
NLVGWAKQLYREKRGAEILDPELVT-DKSGDVELFHYLKIASQCL
NLVGWSKMKAREGKHMEVIDEDLLKEG <mark>SSES</mark> LNEKEGFEGGVIVKEMLRYLEIALRCV
NLVGWAKQLYREKRGAEILDPELVT-DKSGDVELLHYLKIASQCL
TLRQLVEKSIGNGRKGMVRVLDMELGDSIVSLKQEEAIEDFLKLCLFCT
-MAKWVCTALDKCGLEPVIDPKLDLKFKEEISKVIHIGLLCT
AETPAKRPNMLDVLKALKEI
DDRAWRRP T MVQVMAMFKEIQAGSGID <mark>SQST</mark> IRSIEDGGF <mark>S</mark> TIEMVDM <mark>S</mark> IKEVPEGKL
DDRPFKRPTMIQLMAMFKEMKADTEEDESLDEFSLKETPLVEESRDKEP
DDFPSKRPNMLQVVASLRELRGSENN <mark>SHS</mark> HSN <mark>S</mark> L
DDRPFKRPTMIQVMTMFKELVQVDTENDSLDEFLLKETPLVEESRDKEP
SSRPEDRPDMNEILTHLMKLRGKANSFREDRNEDREV
SPLPLNRPSMRKVVIMLQEVSGAVPCSSPN <mark>TS</mark> -KRSKTGGKLSPYYTEDLN <mark>S</mark> V

Supplemental Fig. S7. Alignment of the EMS1 cytoplasmic domain with its four most closely related LRR-RLKs (BRI1, BRL1, BRL2 and BRL3) as well as FLS2 and HAE. Red letters indicate identified phosphorylation sites. Red letters highlighted in green indicate conserved phosphorylation sites. The red letter in cyan indicates S891 in BRI1, FLS2 S938 in blue, and HAE S856 in brown. Numbers indicate positions of identified *in vitro* phosphorylation sites in EMS1.