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Parameter updates. We update a single parameter θi at a time using the independence sampler,

a special case of the Metropolis–Hastings algorithm (1). A new value θ′i is chosen from a proposal

distribution q(θ′i|θ−i,M,D), where M and D represent the current missing and observed data,

respectively, and is accepted (replaces θi) with probability

α = min
(

1,
q(θi|θ−i,M,D)p(θ′i|θ−i,M,D)
q(θ′i|θ−i,M,D)p(θi|θ−i,M,D)

)
;

otherwise, θi remains unchanged. By Bayes’ Theorem and our choice of prior, for any valid θ′i

p(θ′i|θ−i,M,D)
p(θi|θ−i,M,D)

=
p(M,D|θ′i, θ−i)p(θ′i|θ−i)p(θ−i)
p(M,D|θi, θ−i)p(θi|θ−i)p(θ−i)

=
p(M,D|θ′i, θ−i)
p(M,D|θi, θ−i)

.

For efficient sampling, q(θ′i|θ−i,M,D) should be close to p(θ′i|θ−i,M,D), with tails no lighter

than those of p (2). WithDi = {Xit | t = m− k + 1, . . . , m}, the components (M1, D1), (M2, D2), . . . ,

(Mn, Dn) form a Markov chain, and hence the Bernstein–von Mises Theorem extended to stochastic

processes implies that the distribution p(θ′i|θ−i,M,D) is close to a normal distribution centered at

θ̂i (the maximum likelihood estimate of θi given θ−i, M , and D) and having variance approximately

equal to the inverse of the observed Fisher information F(θ̂i) = − ∂2

∂θ2
i
log p(M,D, θ−i|θi)

∣∣∣
θi=θ̂i

(3).

Under our discrete-time model of evolution, the log likelihood at θ = {λ, π, κ} is

log p(M,D|θ) =
∑

σ,b,
w,x,y∈{A,C,G,T}

[
Nσbwxyx log(1−

∑
z 6=x κbστwxy→zλσηb

(wxy→z))
+
∑

z 6=x Nσbwxyz(logκbστwxy→z + logλσηb
(wxy→z))

]

+
∑

ρ,
v,w,x∈{A,C,G,T}

Rρvwx log πρ(x|v, w),

where Nσbwxyz is the number of occurrences in (M,D) of the base x mutating to z (if z 6= x) or

not mutating (if z = x) in one time unit on branch b when x has neighboring bases w and y, and

Rρvwx is the number of root or newly inserted bases x preceded by v and w in sequence composition

category ρ. Hence, the counts N and R are sufficient statistics, and we may analytically compute
p(M,D|θ′i,θ−i)
p(M,D|θi,θ−i)

for θi any κ, λ, or π parameter, as well as π̂ρ and F(π̂ρ) for each ρ, as a function of these

counts. Computing θ̂i and F(θ̂i) for the κ and λ parameters would require solving numerically, so
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we instead analytically derive the analogous θ̃i and F(θ̃i) for the continuous-time model as follows

(note that π̂ρ = π̃ρ and F(π̂ρ) = F(π̃ρ)).

Under the continuous-time model, the log likelihood (excluding terms for the π parameters) is

f(θ|M,D) =
∑

σ,b,
w,x,y∈{A,C,G,T},

z 6=x

[
−κbστwxy→zλσηb

(wxy→z)Tbσwxy +Nσbwxyz(logκbστwxy→z + logλσηb
(wxy→z))

]
,

where Tbσwxy =
∑

z Nσbwxyz represents the total amount of time spent as base x in region type σ

and branch b with neighbors w and y. Setting partial derivatives to 0 and solving, we have

κ̃bστ =

∑

w,x,y,z 6=x : τwxy→z=τ

Nσbwxyz

∑

w,x,y,z 6=x : τwxy→z=τ

λσηb
(wxy→z)Tbσwxy

and

λ̃ση(wxy→z) =

∑

b : ηb=η

Nσbwxyz

∑

b : ηb=η

κbστwxy→zTbσwxy

.

From the second derivatives, we estimate variances

F(κ̃bστ)−1 =

∑

w,x,y,z 6=x : τwxy→z=τ

Nσbwxyz

( ∑

w,x,y,z 6=x : τwxy→z=τ

λσηb
(wxy→z)Tbσwxy

)2

and

F(λ̃ση(wxy→z))−1 =

∑

b : ηb=η

Nσbwxyz

( ∑

b : ηb=η

κbστwxy→zTbσwxy

)2 .

We now take for q a t distribution with four degrees of freedom centered at θ̃i and scaled to have

variance F(θ̃i)−1, which approximates the normal distribution but with heavier tails. This choice

of proposal distribution yields acceptance rates for the analyses described of ≈92% for the branch

scale parameters, ≈82% for the substitution rates, and ≈64% for the root transition probabilities.
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Missing data updates. We update Mi using Gibbs sampling (1) (independence sampling with

q = p, so that α = 1) via the following algorithm. The target distribution is

p(Mi|θ,M−i, D) =
p(Mi,M−i, D|θ)∑
M ′

i
p(M ′

i ,M−i, D|θ) =
∏m

t=0 rt(Xiβt, Xit)∑
y0 ,...,ym

∏m
t=0 rt(yβt , yt)

,

where the summation
∑

y0 ,...,ym
is over yt ∈ {A,C,G,T} if Xit ∈ {A,C,G,T} but over yt ∈ {φ} if

Xit = φ, and

rt(yβt, yt) = πρit(yt|X−−
it , X−

it )πρ+
it
(X+

it |X
−
it , yt)πρ++

it
(X++

it |yt, X
+
it )

· ψ−
it(X

−−
iβt

X−
iβt
yβt → X−

it )ψit(X−
iβt
yβtX

+
iβt

→ yt)ψ+
it(yβtX

+
iβt
X++

iβt
→ X+

it ),

where ρ+
it and ρ++

it are the sequence composition categories for X+
it and X++

it , respectively, and

ψ−
it = ψjt and ψ−

kt = ψjt, where j and k are the sequence position indices of X−
it and X+

it . The last

equality follows from the fact that all factors not involving the ith position cancel.

For each internal tree position t = 0, . . . , m−k, let At = {s : βs = t}. For t = m−k+1, . . . , m,

define St(x) = 1 if x = Xit or Xit = N and St(x) = 0 otherwise. Iteratively, for t = m− k, . . ., 0,

define St(x) =
∏

s∈At

∑
y ris(x, y)Ss(y). Then St(x)/

∑
z St(z) is the probability of obtaining the

portion of the Di that are descendants of position t in the tree given Xit = x, θ, M−i.

The value ofXi0 is then sampled according to p(Xi0|θ,M−i, D) = S0(Xi0)/
∑

z S0(z). GivenXit,

we sampleXis for each s ∈ At using p(Xis|Xit, θ,M−i, D) = ris(Xit, Xis)Ss(Xis)/
∑

z ris(Xit, z)Ss(z).

Iterating for t = 0, . . . , m− k, we obtain a realization of Mi drawn from p(Mi|θ,M−i, D).

Missing data components are updated in a randomly permuted order of all positions; when all

positions have been updated, a new permutation is chosen.

Implementation details. Based on initial rate estimates obtained by using the dnaml program

from the phylip package (version 3.6b) with default parameters (4), each branch along the tree

was divided into two or more discrete time units such that the average substitution rate per time

unit is <0.005, resulting in a total of 357 time units within the tree.

For each analysis, initial branch lengths were estimated using phylip (4); initial context-

dependent substitution rates were estimated by parsimony; initial transition probabilities for the
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root and inserted sequence distribution were estimated from the observed sequences; and an initial

realization of the missing data was generated by randomly choosing a base at each sequence site

of each tree position and then updating each missing data component three times without any

parameter updates.

The Markov chain Monte Carlo (MCMC) was then run until each missing data component was

updated 500 times. Between successive missing data component updates, with probability 1/500,

all branch length and substitution rate parameters were updated, and with probability 1/20, all root

distribution parameters were updated. After a burn-in period consisting of 40 additional updates

of the missing data components, we sampled each time 1% of the missing data components were

updated. There were, on average, at least 16 accepted updates of the parameters between samples.

Dataset. Low complexity regions were detected using dust (R. L. Tatusov & D. J. Lipman,

unpublished) with default parameters. CpG islands were detected (5) as maximally scoring seg-

ments of the sequence (using a scoring scheme that assigns CpG dinucleotides a score of 17 and

all other dinucleotides −1) having scores 50 or greater, and for which at least 20% of the segment

falls outside of all annotated repeats. Removed segments were replaced by three consecutive N’s

to reduce spurious neighbor effects between remaining adjacent positions. Sequence positions were

marked as either transcribed or untranscribed according to the human annotations and as part of

a repeat according to annotations for each species.

The results in the paper were obtained without any filtering of the sequence by alignment quality.

To evaluate the effect misalignments may have on obscuring true substitution events or incorrectly

suggesting their occurrence, the analysis was repeated using the following algorithm to reduce the

number of misaligned bases, by iteratively accepting well-aligned regions in each sequence. First,

the entire human sequence was marked as accepted. For each of the other sequences, all bases

within a sliding window of size 14 were accepted if at least 11 bases within the window, including

two consecutive bases at each end of the window, matched accepted bases in another sequence.

This process was continually repeated for all windows and all sequences until no new windows were

accepted. Then any parts of the sequences that were not accepted were masked out. Repeating

the analyses with poorly aligned sequences removed in this manner did not qualitatively affect the

conclusions, although branch lengths between distantly related species were decreased.
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Defining substitution types. To determine the optimal partitioning into types for explaining

variation among lineages, we carried out a weighted ANOVA, taking advantage of the fact that

we have reliable variance and covariance estimates for the parameter estimates from the MCMC

analysis. We assume a class of models in which differences among clades are explained by multi-

plicative shifts of substitution rates so that, for clade η, logλη(wxy→z) = logλ(wxy→z) + dητ +

εη,wxy→z , where λη(wxy→z) is the clade-specific substitution rate estimated from the MCMC

sample, λ(wxy→z) is the clade-independent component, dητ is the clade-specific shift for the sub-

stitution type τ containing wxy→z, and
∑

η dητ = 0. We assume departures from this model arise

from uncertainty in the MCMC estimates, so that under weak regularity conditions the values

{εη,wxy→z}∀η,wxy→z asymptotically follow a multivariate normal distribution, with mean 0 and a

covariance matrix estimated as Cov{logλη(wxy→z)} from the MCMC sample. We use this normal

approximation to define log likelihoods for discriminating among possible values of λ(wxy→z) and

dητ .

Only untranscribed region rate matrices for the primate, rodent + rabbit, and carnivore +

artiodactyl + horse clades were used in the ANOVA because of relatively large variances for the

other branch group estimates. For the simplest model in this class, there is a single substitution

type; this model yielded a log likelihood of −3, 232.4. Defining six symmetric substitution types

of the form NxN→z increased the log likelihood to −1, 161.0. We then considered splittings of

each of these six types into subtypes by using a recursive procedure that accepts a splitting if the

Bonferroni corrected P value (computed assuming the χ2 distribution for twice the log likelihood

improvement and taking account of the full number of tests performed) does not exceed 0.001. This

procedure yielded a division into the 14 types listed in Table 1, with a corresponding log likelihood

of −319.6.
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