pH-Dependent Cellular Internalization of Paramagnetic Nanoparticle

Branislava Janic,[†] Mohammed PI. Bhuiyan,[‡] James R. Ewing,[‡] and Meser M. Ali*[‡]

Contribution from the[†] Radiation Oncology, Henry Ford Hospital, Detroit, MI 48202 [‡]Department of Neurology, Henry Ford Hospital, Detroit, MI 48202

*E-mail: mali8@hfhs.org

Page	Contents
S1	Table of Contents
S2–S3	Experimental Procedures and conjugation of
	pHLIP and dye with nanoparticle
S 3	Zeta potential and Fluorescence Imaging
S4	References

Experimental Procedures

Reagents: All reagents used were purchased from Sigma Aldrich (St. Louis, MO) unless otherwise stated. NHS-Rhodamine was obtained from Thermo Scientific (Rockford, IL). Generation 5 (G5) of polyamido-amine (PAMAM) dendrimer solution was purchased from Dendritech (Miland, MI). PAMAM dendrimer was first freeze dried under vacuum and resuspended with PBS buffer solution for conjugation reactions. Dendrimeric chelates and their conjugates were purified by repeated ultrafiltration with deionized water using appropriate molecular weight cut-off Millipore's Amicon Ultra centrifugal filters. sulfo-LC-SPDP were purchased from Sigma. Bt-pHLIP (AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG-(dpeg4-biotin) was custom made from New England peptide (Boston, MA).

Conjugation of pHLIP and Rhodamine dye with dendrimer-based paramagnetic nanoparticle: (GdDOTA-4AmP)₄₄-G5 was synthesized and characterized according to our recently published method.¹ (GdDOTA-4AmP)₄₄-G5 (0.19 g, 2.4 µmol) was reacted with heterobifunctional cross-linker sulfosuccinimidyl 6-(3'-[2-pyridyldithio]propionamido)hexanoate (sulfo-LC-SPDP) (0.005 g, 0.01 mmol) in PBS (pH 7.4) at room temperature for 6 hours. Then pyridinyldisulfide activated (GdDOTA-4AmP)44-G5 was repeatedly filtered through a Centricon C-30 diafiltration cell with a 30 kD MWCO until SEC-HPLC revealed that no further low molecular weight material was present. A version of biotinylated pHLIP (0.02 g, 0.42 µmol) with a single cysteine residue at its C terminus (AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG-(dpeg4-biotin) was dissolved in DMSO/H₂O (1:1) and was slowly added to the reaction mixture and further stirred for 6 hours at room temperature. The product was repeatedly filtered through a Centricon C-30 diafiltration cell with a 30 kDa MWCO. The retentate was lyophilized to obtain the final dendrimer-based paramagnetic agent, Gd₄₄-G5-ss-Bt-pHLIP. Biotin molecule is attached to the C-terminus of pHLIP in order to quantify the number of pHLIP peptides conjugated with Gd₄₄-G5. The number of biotin molecules conjugated with PAMAM Gd44-G5 dendrimer was determined using HABAavidin assay as instructed by the provider (Pierce Chemical). The HABA assay with biotin and

avidin revealed that on average 3.1 molecules of biotin were present in Gd₄₄-G5-ss-Bt-pHLIP dendrimer. Since biotin is attached with pHLIP peptide, therefore, 3.1 pHLIP peptides are also present in Gd₄₄-G5 particle. Finally, rhodamine-NHS dye was conjugated to the remaining amines surface of preloaded Gd₄₄-G5-ss-Bt-pHLIP₃ according to our recent published method ² in order to achieve final conjugate Rho-Gd₄₄-G5-ss-Bt-pHLIP₃ as shown in **Figure 1**. The labeling degree of rhodamine was determined by measuring the absorbance of rhodamine ($\varepsilon_{552} = 80,000 \text{ M}^{-1} \text{ cm}^{-1}$), and 1.2 molecules of rhodamine were conjugated with each dendrimer-based paramagnetic nanoparticle.

Zeta potential measurement: The exterior surface charge of Rho-Gd₄₄-G5-Bt-pHLIP₃ particle is assessed by zeta potential measurement (Malvern zetasizer nano series). The surface charges of Gd₄₄-G5-Bt-pHLIP₃ at pH 7.4 and 6.5 were -34.21 ± 2.99 mV and -2.41 ± 1.17 mV, respectively.

Figure S-1: pH dependant zeta potential of Rho-Gd₄₄-G5-ss-Bt-pHLIP₃ nanoparticle.

Fluorescence Imaging: Differentiated cancer cells were incubated in the presence of Rho-Gd₄₄-G5-ss-Bt-pHLIP₃. After 3 h of incubation at 37°C, 5% CO2, the cells were washed with probe free media, fixed in 3% paraformaldehyde and analyzed by fluorescent microscopy using rhodamine excitation/emission filters.

Reference

- (1) Bhuiyan, M. P.; Aryal, M. P.; Janic, B.; Karki, K.; Varma, N. R.; Ewing, J. R.; Arbab, A. S.; Ali, M. M. Concentration-independent MRI of pH with a dendrimerbased pH-responsive nanoprobe. *Contrast media & molecular imaging* **2015**, *10*, 481-486.
- (2) Huang, Y.; Coman, D.; Hyder, F.; Ali, M. M. Dendrimer-Based Responsive MRI Contrast Agents (G1-G4) for Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). *Bioconjugate chemistry* **2015**, *26*, 2315-2323.