Repetitive Dosing of Fumed Silica Leads to Pro-Fibrogenic Effects Through Unique Structure-Activity Relationships and Biopersistence in the Lung

Bingbing Sun,¹ Xiang Wang,² Yu-Pei Liao,¹ Zhaoxia Ji,² Chong Hyun Chang,² Suman Pokhrel,³ Justine Ku,⁴ Xiangsheng Liu,¹ Meiying Wang,¹ Darren R. Dunphy,⁵ Ruibin Li,¹ Huan Meng,¹ Lutz Mädler,³ C. Jeffrey Brinker,^{5,6,7} André E. Nel,^{1, 2,*} and Tian Xia^{1, 2,*}

¹Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States; ²California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States; ³Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany; ⁴Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States; ⁵Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States; ⁶Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States; ⁷Self-Assembled Materials Department, Sandia National Laboratories, PO Box 5800 MS1349, Albuquerque, New Mexico 87185, United States.

*Address correspondence to txia@ucla.edu or anel@mednet.ucla.edu.

Table S1. Dosimetry calculations for fumed silica

1. Calculated monthly amorphous silica in a silica manufacturing facility, where workers were exposed to 10.5 mg/m^3 precipitated amorphous silica.¹

Assumptions:

- · Ventilation rate of a healthy human adult: 20 [L/min]
- · Deposition fraction: 30%
- · Monthly exposure period: 8 [h/day], 5 [d/week], 4 weeks

Calculation of monthly deposition:

 $\frac{10.5\text{mg}}{\text{m}^3} \quad X \frac{20\text{L}}{\text{min-person}} X 30\% \quad X \frac{60\text{min}}{\text{hour}} X \frac{8\text{hour}}{\text{day}} X \frac{5\text{day}}{\text{week}} X \frac{4\text{week}}{\text{month}} X \frac{\text{m}^3}{1000\text{L}} = 604 \text{ mg/person}$

2. Monthly deposition level (mass/surface area) in a human worker Assumptions:

· Human alveolar surface area: $102 \text{ [m}^2/\text{person]}$

Calculation:

 $\frac{604 \text{mg}}{\text{min-person}} X \frac{\text{person}}{102 \text{m}^2} X \frac{1000 \mu \text{g}}{\text{mg}} = 5.921 \text{ mg/m}^2$

3. Comparable deposition level in a mouse receiving a one-time instillation Assumptions:

· Alveolar epithelium surface area of a mouse: $0.05 \text{ [m}^2/\text{mouse]}$;

• Weight of a mouse: 25 [g]

Calculation:

 $\frac{5.921 \text{mg}}{\text{m}^3 \cdot \text{month}} X \frac{0.05 \text{ m}^2}{\text{mouse}} X \frac{\text{mouse}}{25g} X \frac{1000 \text{g}}{\text{kg}} = 11.98 \text{ mg/kg}$

The chosen dose range of 6, 9 and 21 [mg/kg] in our study covers the calculated dose of 11.98 [mg/kg] per mouse, which is calculated based on a real-life exposure measurement of amorphous silica in a manufacturing facility.¹

Figure S1. Fumed silica dissolution in simulated biological fluids. (A) TEM analysis showing silica dissolution in Gamble's Solution. 20 μ L of the fumed silica stock solution (5 mg/mL) was added to 980 μ L of exposure media before sonication. The particle suspension was incubated at 37 °C. Samples were taken at 0, 6, and 40 h, centrifuged at 15,000 rpm, and each pellet was washed and re-suspended in water for TEM analysis.

The scale bar is 50 nm. (B) ICP-OES analysis to study the time-dependent Si release from pristine and 7% Ti-doped fumed silica in various exposure media. 20 µL of each fumed silica stock solution (5 mg/mL) was added to 980 µL of exposure medium before sonication. The particle suspension was incubated at 37 °C. Samples were taken at 0, 6, and 40 h, centrifuged at 15,000 rpm, and each supernatant was collected for acid digestion and ICP-OES analysis. *p<0.05 compared to control exposure media without particles. *p<0.05 compared to pristine fumed silica. (C) Dissolution of MIN-U-SIL, a natural form of α -quartz (QTZ), was assessed in Gamble solution for 40 hr at 37 °C.

Figure S2. The induction of IL-1 β production by fumed silica was reduced by Tidoping. Fumed silica was added to Gamble's Solution at 100 µg/ml and the particle suspension was incubated at 37 °C. Samples were taken at 0 and 40 h, and centrifuged at 15,000 rpm. Supernatant and pellet were collected separately, and then exposed to THP-1 cells. **p*<0.05 compared to control cells without particle treatment.

Figure S3. Comparative analysis of the cytokine kinetics of single *vs.* repetitive dose fumed silica exposures. C57BL/6 (n=6) mice were exposed to either a single dose of 21 mg/kg or 3 doses of 7 mg/kg fumed silica, one week apart, by oropharyngeal aspiration. On day 21, BAL fluid was collected to determine (A) MIP-1 α , (B) MDC, and (C) IL-6 levels. **p*<0.05 compared to control mice without particle treatment.

Figure S4. Comparative analysis of lung inflammation kinetics induced by single *vs.* **repetitive fumed silica exposures.** C57BL/6 (n=6) mice were exposed to either single dose of 21 mg/kg or 3 doses of 7 mg/kg fumed silica, one week apart, by oropharyngeal aspiration. On day 21, mice were sacrificed. H&E staining images showed the presence of focal inflammation in the lungs of animals treated with fumed silica.

Histology (H&E staining)

Figure S5. Ti doping ameliorated the pro-fibrogenic effects of fumed silica during repetitive dosing. C57BL/6 (n=6) mice were exposed to either a single dose of 21 mg/kg or 3 x 7 mg/kg pristine or 7% Ti-doped fumed silica, one week apart by oropharyngeal aspiration. On day 21, mice were sacrificed. H&E staining images show the presence of focal inflammation in the lungs of animals treated with fumed silica, and Ti doping reduce the inflammatory effects.

References:

1. Choudat, D.; Frisch, C.; Barrat, G.; el Kholti, A.; Conso, F., Occupational Exposure to Amorphous Silica Dust and Pulmonary Function. *Br. J. Ind. Med.* **1990**, 47, 763-766.