Supplementary Tables

Table S1. Clinical data on 59 individuals with a CACNA1F mutation.

Individual #59 was excluded as this male had a *CABP4* mutation. BCVA = best corrected visual acuity, LogMar = Logarithm of Minimal angle of resolution, eq. sph.= equivalent sphere, D = diopters, P = light perception, -*High myopia prior to cataract operation, †Atypical course (severe retinal dystrophy), ‡ Progressive cone dystrophy, +/-= present/absent, nd = no data.

Table S2. Foveal Morphology in AED.

Cirrus and Spectralis grading of hypoplasia was masked. Agreement between modes for this subjective assessment was 100%. Also, in all cases where both eyes could be graded, there was symmetry. Y=yes, N=no, ND=no data, NA=image not analyzable

Table S3. Foveal Outer Segment Length in AED.

Mean ± standard deviation outer segment length for CSNB2A was $41.65 \pm 4.99\mu$ m, OD (n=48) and $42.07 \pm 5.65\mu$ m, OS (n=48). For comparison, normal outer segment length is $46.04 \pm 4.34\mu$ m. Normal data derived from Wilk et al.⁶ n=23 subjects; age (mean ± standard deviation) = 30 ±16 years; range 8-67 years. ND=no data, NA=image not analyzable. Subject #59 was not included in the calculation of the mean values.

Table S4. Subfoveal choroidal thickness in AED

Mean \pm standard deviation choroidal thickness for AED was 195.74 \pm 77.36µm, OD (n=40) and 187.85 \pm 87.27µm, OS (n=37). The values appear significantly below previously published normative data. ND=no data, NA=image not analyzable. Subject #59 was not included in the calculation of the mean values.

Table S5. In silico prediction of the pathogenicity of identified missense variants

^a SIFT (sift.jcvi.org/), the numbers in brackets are (score; median). ^b Polyphen2 (<u>http://genetics.bwh.harvard.edu/pph2/</u>), the number in brackets is the score using the HumVar model. AlignGVGD (<u>http://agvgd.iarc.fr/</u>), MutationTaster (<u>http://www.mutationtaster.org/</u>). ^c LuCAMP data are from exome sequencing of 2000 persons residing in Denmark (ref). ^d dbSNP is from version 142. ^e ESP is the Exome variant server (<u>http://evs.gs.washington.edu/EVS/</u>). ^f The class is based on an in house classification system based on mutation type, segregation data, population frequencies and functional studies.