
Supplementary Material - Simulations of 
Theobald's common origin test
 

Independent origin as a special case of the common origin
 
First we should notice that for a given fixed evolutionary model, the phylogenetic trees representing the 
hypothesis of independent origins can be represented by a single phylogenetic tree with the corresponding 
vanishing branches with infinite lengths.
Therefore the independent origins model is a particular case of the model of common origin where for
each independent origin three internal branches are fixed - one at ∞, representing the de novo appearance, 
and one at each of its side become redundant by the pulley principle.
 

 



 

Artificial protein sequences with significant BLAST similarity
We reevaluated the likelihood of the synthetic datasets created by D. Theobald and described in subsections 
4.2 and 4.3 of his Supplementary Information. We calculated the log-likelihood (LnL) of the datasets under 
both hipothesis using codeml and phyml. It is important to use the same program to compare the LnL 
values under the two hypothesis since there might be roundoff errors and other errors associated to the 
approximations. We report here the analyses conducted with phyml, but we also provide the scripts for 
working with codeml.
 
In subsection 4.2 of the original article he uses two sequences (only one branch), and in subsection 4.3 he 
works with three sequences (three internal branches with only one possible topology). Our strategy for both 



cases was to calculate the LnL over a grid of values for the branch lengths under a fixed model, where the 
independent hypothesis can be represented by an infinite branch length (in practice we set it to a very large 
value).

Two sequences
 Phyml can not work directly with ony two sequences (or at least we are unaware of such an option), but we 
can circumvent that by creating a quartet such that the each pair of neighbour sequences are identical and 
have a branch length of zero. That is, a tree of the form ((A:0, A:0):x, (B:0, B:0)) where x is the internal branch 
length that will be made to vary. 
 
We generated a  log-spaced grid of 130 values for the branch length ranging from 0.2 to 108, and calculated 
the LnL under the Blosum62, Dayhoff and JTT replacement matrices where for each matrix we used the 
model-defined equilibrium frequencies or the empirically-derived ones (“+F”). We furthermore assumed that 
there was no gamma heterogeneity of rates among sites. Since it is essencial that we use the same software 
(in our case, phyml) to calculate the LnL under the common origin and independent origin hypoteses, we 
approximate the infinite branch length of the independent origins by a large value (in phyml it is explicitly set a 
t 100). 
 
The results are summarized in the figure below. The left panel represent the LnL values for each branch 
length, under the six models. We can see that under all models the maximum likelihoood (ML) value is 
achieved at a finite, small branch length (between 1.8 and 2.4). To understand how better each branch 
length fares compared to the independent origin hypothesis, we subtracted each LnL value by the LnL value 
at “infinity” which in our case is the branch length equal to 108 (that is truncated to 100 by phyml). This 
likelihood ratio test is represented on the right panel. 

 
It is worth noticing that there are branch length values that have a lower likelihood than the infinite length 
one. For example, the independent hypothesis would be favored for all lengths shorter than 0.64 under the 
Blosum62 matrix (or below 0.67 under Blosum62+F), which might explain the result obtained by D. Theobald 
using such combination of model and branch length.
 

implementation directory: test002
This directory contains the script run_phyml.py, based on phyml. The output is on file table_LnL.txt 
that contains the columns: 

1. tree length (defined by grid);
2. tree length (used by phyml, which should correspond to the grid value except for exceedingly 

large values, that are truncated by phyml);
3. BLOSUM62 matrix using empirical equilibrium frequencies;
4. BLOSUM62 matrix using model-defined equilibrium frequencies;
5. Dayhoff matrix using empirical equilibrium frequencies;
6. Dayhoff matrix using model-defined equilibrium frequencies;



7. JTT matrix using empirical equilibrium frequencies;
8. JTT matrix using model-defined equilibrium frequencies;

Here we assume no gamma heterogeneity of rates. The program plot_blen.R can then be used in R to 
plot the graphics.
 
extra:  test001
This contains the script that does the codeml analysis (codeml belongs to the PAML package). The 
analysis can be reproduced by running the script run_paml_grid_blen.sh, that depends on the phylip 
file seqpair.phy with two sequences. The log-likelihood(LnL) values will be output to file paml2.txt, 
which contains the columns: tree length, branch length (half the tree length), and four LnL values 
representing models BLOSUM62+F,  BLOSUM62, DAYHOFF+F, DAYHOFF respectively. 
 
The BLOSUM62 matrix values was imported from MrBayes since it was not available in PAML. Notice 
that contrary to phyml, codeml does work with a pair of sequences. The program plot_blen.R can then 
be used in R to plot the graphics.

 

Three sequences
For the three sequences presented in subsection 4.3 of D. Theobald’s Supplementary Material, we again 
employed the above strategy of calculating LnL values over a grid of values, with the caveat that in the case of 
a triplet we have three branches over which to vary their lenghts. 
 
For each branch we varied its value between 0.0001 and 100, producing 29 points almost evenly spaced on 
a logarithmic scale. We assumed the WAG replacement matrix under four distinct scenarios: presence or 
absence of gamma-distributed rate heterogeneity, and model-defined versus empirically-derived equilibrium 
amino-acid frequencies. 
 
The results are shown below, where again we assume that a large enough length is equivalent to the 
independent hypothesis. At the left we have the difference between the LnL of “short” trees (small value for the 
sum of the branch lengths) and the best “large” tree (ML tree with sum of branch lengths larger than 20). Each 
point is a combination of branch lengths, and at the right we have the LnL values for the individual branch 
lengths where the others were fixed at their ML values. The labels “M”, “E”, and “P” refer respectively to the 
branches of the artifical sequences “mytu1”, “esco1” and “pogi1”.

 
Here again we observe that in fact the common origin hypothesis would be favored, and we suspect that D. 
Theobald might have used distinct programs to do the calculations or the program failed to exploit the whole 
parameter space.
 

implementation directory: test004



The program run_phyml.py is based on phyml software and will use the input file seqtri.phy and create 
an output file called table_LnL.txt. The R script plot_blen.R will then plot the results. The output file 
will contain the columns:

1. total tree length (sum of the three branch lengths)
2. length of branch leading to “esco1” sequence
3. length of branch leading to “mytu1” sequence
4. length of branch leading to “pogi1” sequence
5. LnL value for WAG model with empirical frequencies and homogeneous rates
6. LnL value for WAG model with model-based  frequencies and homogeneous rates
7. LnL value for WAG model with empirical frequencies and variable rates following gamma
8. LnL value for WAG model with model-based  frequencies and variable rates following gamma

 
extra: test003
The codeml-based script run_pamltri_grid_blen.sh will create an output file paml3.txt with columns:

1. length of branch leading to “esco1” sequence
2. length of branch leading to “mytu1” sequence
3. length of branch leading to “pogi1” sequence
4. LnL value for WAG model with empirical frequencies and homogeneous rates
5. LnL value for Blosum62 model with empirical frequencies and homogeneous rates
6. LnL value for Blosum62 model with model-based frequencies and homogeneous rates

There’s no script to interpret the output, but on Unix we can always use “sort -n -k paml3.txt” or read it 
into R.  

Randomly shuffled data
We replicated the analyses described in subsection 3.1 of the D. Theobald’s Suppl. Material, but this time 
under the more realistic setting of aligning the shuffled sequences. By shuffling the columns of one (or both) 
of the clades it is natural that the phylogenetic signal will decay, but such a dataset would be a very unlikely 
candidate for phylogenetic analysis given its very low similarity. By “shuffling” we understand interchanging at 
random the columns of all sequences belongin to one group -- such that the alignment is preserved within the 
group but disrupted between groups. Any phylogenetic analysis in such cases should start by optimizing the 
alignment for the sequences.
 
We reshuffled the Eukarya dataset 128 times, each time realigning it (optimizing the alignment) against the 
Bacteria dataset, and comparing the resulting phylogeny with those if we separate again the two groups. We 
always compare the datsets after shuffling and realigning since the inclusion of gaps (and even the order of 
computation) might interfere in the final likelihood values. 
 
On the figure below we see a preliminary analysis using one simple model (Blosum62, no rate heterogeneity) 
and estimating the ML branch lenghts before and after realigning the shuffled sequences. We can see that 
before the realignment the ML trees have very long branches (blue lines), favoring the independent hypothesis 
as reported by D. Theobald. But the total tree length can be greatly decreased by simply optimizing the 
alignment (red lines), which raises the suspicion of a common origin being favored. We cannot, however, 
compare the likelihoods before and after the realignment because they represent distinct data for the 
phylogenetic reconstruction program. 
 



 
Below we have a figure summarizing the main results of the analysis: for the 128 shuffled and realigned 
datasets, we have the total tree length versus the AIC, all strongly supporting the common origin. The circle 
size is proportiional to the realigned dataset length, which was between 7108 and 7331 (around 9% longer 
than the original 6591 amino acid sites alignment).
 

 
 

implementation directory: test006
The script  40.reshuffle_prottest.py will do iteractively the following steps (based on the best trees from 
the original datasets):

1. shuffle the columns of the Eukarya (4 sequences) alignment 
2. create an dataset with 8 sequences,  by piling up the 4 taxa from Bacteria and 4 from the 

shuffled Eukarya
3. optimize the alignment of this eight-taxa dataset with the program muscle
4. use prottest to find the best model and AIC values under  the fixed tree for this realigned 

dataset
5. use prottest for this realigned dataset after splitting the Eukarya and Bacteria sequences

The output will be stored on a file named like tableLnL_.txt  with, respectively, the ML total tree lengths 
of B, E, and BE, the sequence length of the realigned dataset, and the AIC defined as AIC(B)+AIC(E)-
AIC(BE). Therefore positive values favor the common origin hypothesis.

 
extra: test005



The program create_align.py  iteractively shuffles the dataset (one of two groups, Archea of Bacteria) 
and calculates the ML trees before and after realigning the sequences, using a Blosum62 model with 
no rate heterogeneity. The output contains the columns:

1. index
2. ML tree length (sum of branch lengths) before realigning
3. LnL of ML tree before realignment 
4. ML tree length (sum of branch lengths) after realignment
5. LnL of ML tree after realignment 
6. sequences size (number of columns) after realignment

This analysis mainly shows that realigning the reshuffled 
The program calc_original_align.py simply finds the ML trees for the original (without reshuffling) 
datasets.

Simulations under H0 and H1
For us the null hypothesis (H0) is the independent origins case, while the common origin represents the 
alternative hypothesis (H1). We used the concatenated data set comprised of Bacteria and Eukarya kindly 
provided by D. Theobald, and using prottest found the best models and parameters. We did this for three 
data sets: only bacteria (B) comprised of four sequences, only eukarya (E) with four sequences as well and 
both bacteria and eukarya (BE) with eight sequences in total, where each alignment has 6591 sites. We 
subsequently used the optimal phylogenetic trees and branch lengths as input for the simulations of the 
respective data sets. Curiously the best model found was LG+I+G+F for all three alignments, while Theobald 
reports rtREV+I+G+F for BE and rtREV+G+F for each quartet -- but this is due to the newer version of phyml 
that we used (v3.0, against v2.4.5 used by him). 
 
 
 
 

extra: test010
The script 10.align_and_phyml.py will simulate datasets of length 6591 amino acid sites under the ML 
8 taxa tree for Bacteria and Eukarya. Then it will calculate the Likelihood Ratio Test (LRT)  between 
the separate quartets (datasets B and E) and the 8 taxa together (dataset BE), before and after 
realigning. The ln(LRT) = LnL(B) + LnL(E) - LnL(BE), and the model used in the simulations and in the 
inference is WAG+G+F. Not surprisingly the common origin was (correctly) strongly favored, and the 
realigned datasets were very similar to the non-aligned ones. 
 

(...)
 

Using bali-phy under H0
We simulated independent data sets under the bacterial and eukarian phylogenies of 500 sites each, 
under the model LG+G+F but with slightly different gamma and frequency parameters for each (e.g. shape 
parameter of 1.43 for bacterial and 1.21 for eukaryan simulations). One replicate is then composed of three 
data sets, as before: each quartet (B and E) independently and a eight-taxa data set produced by joining both 
simulated quartets into a single one. 
 
We then use bali-phy to estimate the posterior distribution of alignments, branch lengths and shape parameter 
assuming the LG+G model under a fixed topology (but variable branch lengths). For each data set we 
sample the parameters 500 times over a run of 10⁵ MCMC iterations, and calculate the marginal likelihood 
marg_lik(data)  as the harmonic mean of the sample likelihoods (in log scale). The log of the Bayes Factor for 
the independent origins hypothesis is then log[marg_lik(B)] + log[marg_lik(E)] - log[marg_lik(BE)] such that 
positive values favor the independent origins and negative values indicate a common origin.



 
On the picture below we see the results summarized over 52 replicates. The panel at the top-left shows the 
histogram of log Bayes factor values per site. That is, the log of the Bayes factor divided by the posterior 
median of the alignment length for BE data set (the nonscaled values can be seen on both panels on the 
right). The panel on the botom left plots the posterior BE alignment sizes against posterior total tree length 
for the BE simulation. There are several ways of summarizing the posterior distribution by one value, and 
we have chosen the maximum likelihood estimate (ML over all MCMC samples) which is depicted in red and 
the posterior median estimate represented in blue. They are connected to show that they refer to the same 
replicate (different estimates from same posterior distribution). The closed circles represent the replicates with 
negative log Bayes Factors. 
In the right panel we plot each of these variables against the log of Bayes Factors.

Our convergence analysis was done on a pilot data set by visual inspection of the time series and by 
calculating the potential scale reduction factor, but we did not systematically checked for convergence of all 
replicates. 
 


