Empirical formula	C4 H14 Br4 N2 Pb		
Formula weight	617.00		
Temperature	103(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	I m m a		
Unit cell dimensions	a = 14.6230(16) Å	<i>α</i> = 90°.	
	b = 6.1041(7) Å	β= 90°.	
	c = 14.4070(16) Å	$\gamma = 90^{\circ}$.	
Volume	1286.0(2) Å ³		
Ζ	4		
Density (calculated)	3.187 Mg/m ³		
Absorption coefficient	25.504 mm ⁻¹		
F(000)	1096		
Crystal size	0.280 x 0.095 x 0.060 mm ³		
Theta range for data collection	1.984 to 28.488°.		
Index ranges	-18<=h<=19, -7<=k<=8, -		
	19<=1<=19		
Reflections collected	7142		
Independent reflections	895 [R(int) = 0.0481]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Empirical		
Max. and min. transmission	0.2163 and 0.07491		
Refinement method	Full-matrix least-squares or	n	
	F^2		
Data / restraints / parameters	895 / 0 / 39		
Goodness-of-fit on F ²	1.137		
Final R indices [I>2sigma(I)]	R1 = 0.0182, $wR2 = 0.0416$		
R indices (all data)	R1 = 0.0185, $wR2 = 0.0417$		
Extinction coefficient	0.00168(9)		
Largest diff. peak and hole	$1.068 \text{ and } -1.161 \text{ e.} \text{Å}^{-3}$		

Supplementary Table 1 | Single crystal X-ray diffraction data of 1D bulk single crystal perovskites.

Supplementary Table 2 | Chemical yield and composition of the component molar ratio in 1D microscale perovskites according to TGA and ¹H NMR data.

Product	Reagent	Starting amount	Molar ratio ^a	Theoretical ratio ^b	Yield
	Octanoic Acid	1.00 mmol	0.00	0.00	
Microscale Perovskites	N, N'-dimethylethylenediamine	0.30 mmol	1.02	1.00	95 %
	PbBr ₂	0.10 mmol	1.00	1.00	

^a Based on ¹H NMR and TGA data; ^b based on the chemical formula: C₄N₂H₁₄PbBr₄.

Supplementary Figure 1 | AFM characterization of the 1D microscale perovskites. a,d, 3D AFM images of $C_4N_2H_{14}PbBr_4$ microscale perovskites. b,e, 2D AFM images of the as-prepared microscale perovskites. c,f, Height profile along the blue line in 2D AFM images (b) and (e).

Supplementary Figure 2 | Proton NMR spectrum of the 1D microscale perovskites in DMSO-d₆.

Supplementary Figure 3 | TGA study of the 1D microscale perovskites. a, TGA heating curves of $C_4N_2H_{14}PbBr_4$ microscale perovskites. b, The corresponding 1st derivative.

Supplementary Figure 4 | Emission (excited at 360 nm) spectra of ball-milled bulk crystals, as well as bulk and microscale crystals at room temperature.

Supplementary Figure 5 | Excitation spectra for the 389 and 475 nm emissions of the 1D microscale perovskites.

Supplementary Figure 6 | Emission spectra of the 1D microscale perovskites at different excitation wavelengths.

Supplementary Figure 7 | Decay curves monitored at 389 nm and 475 nm for microscale crystals at room temperature.

Supplementary Figure 8 | Excitation line of reference and emission spectrum of 1D Pb bromide perovskite bulk crystals by an integrating sphere.

Supplementary Figure 9 | Photoluminescence intensity changes after continuous illumination in air using Hg lamp.

Supplementary Figure 10 | Temperature dependent emission spectra of bulk (a) and microscale (b) crystals from room temperature to 77 K (one scan per 10 K, spectra are normalized for clarity).