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Supplementary methods 

 
Quality control, alignment, and calculation of expression level. An Agilent Bioanalyzer HS 

DNA assay was used for quality control of the cDNA library. The quality of RNA fragments 

was tested using SolexaQA1. Quality was assessed based on the fitness of the mean probability 

of error and the proportion of reads that satisfied cutoff criteria. Transcriptome analyses were 

then performed by applying Tuxedo suite2 to FASTQ files whose quality was reliable. Paired-

ended RNA-seq reads were aligned to the Mouse Genome Assembly (mm10) using TopHat3. 

The quality of Bam files from TopHat was evaluated using SAMStat 4. The expression level of 

each gene was measured as FPKM (Fragments Per Kilobase of transcript per Million mapped 

reads) using Cufflinks2.  

 

Data filtering and normalization. To avoid misinterpretation due to false negative data 

generated by sequencing failure, genes with an FPKM value of zero were excluded from the 

analysis. The statistical distribution of gene expression was standardized by quantile 

normalization of data using the preprocessCore package (Affymetrix, Santa Clara, CA 95051, 

USA). After normalization, data were log-transformed for further analysis. 

 

Gene expression profile analysis. The similarity of transcriptomes between cell populations 

was assessed by creating correlation heat maps and drawing scatter plots. The correlation heat 

map, based on Pearson correlation coefficients, between samples was drawn using the corrplot 

package (Renmin University of China, Beijing, People's Republic of China). Gene expression 

values for two cell types were plotted as a scatter plot using a graphics package (R Foundation 

for Statistical Computing, http://www.R-project.org). Here, genes with expression differences 

of 2-fold or greater were designated DEGs and plotted with cell type-specific colors. A heat 

map was drawn to display the transcriptome profile of each sample. DEGs were identified 

using Cuffdiff, which provides a statistical analysis of the indicated biological replicates. DEGs 

were defined as genes with a q-value (FDR from the Benjamini-Hochberg correction for 

multiple testing) less than 0.05. A heat map of the selected DEGs was drawn using MeV 

(http://www.tm4.org/); a heat map of transcription factors was also drawn. The list of mouse 

transcription factors was retrieved from AnimalTFDB5. Transcription factors with changes in 

expression greater than 3-fold between cell types were selected, and only genes that had less 

than a 2-fold difference between replicates were retained. A heat map was drawn with these 



genes using the made4 package6. A principal component analysis (PCA) plot including all 

genes that passed quality control was drawn using prcomp and plot (R Foundation for 

Statistical Computing, http://www.R-project.org) and processed with data filtering and 

normalization. Principal components of transcriptomes were calculated using the stats package 

from the R Foundation for Statistical Computing (http://www.R-project.org). 

 

Variations in expression during neutrophil differentiation. Microarray data from ImmGen7 

(www.immgen.org) was combined with RNA-seq data generated in the previous steps. CEL 

files for GMPs and neutrophils were downloaded from GEO using accession number 

GSE15907. These CEL files were read, and RMA (robust multi-array average)-normalized 

using the affy package in R (Center for Biological Sequence Analysis, Technical University of 

Denmark, Lyngby, Denmark)8. The differences in scales between microarray and RNA-seq 

data necessitated data conversion and normalization. Because microarray data follow a log-

scale, RNA-seq data were log-transformed and a linear regression was performed to compare 

gene expression profiles of the two platforms. Gene expression profiles of GMPs and NeuPs 

were divided by that of neutrophils to calculate relative expression. The fold change in gene 

expression from GMPs to NeuPs was measured as 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(NeuP)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(GMP)

=
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Neu)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(GMP)�

� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Neu)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(NeuP)�

 

Genes were then categorized into groups based on the fold change of gene expression at two 

differentiation steps: GMP to NeuP (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(NeuP)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(GMP)

) and NeuP to Neutrophil ( 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Neu)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(NeuP)). If gene 

expression changed by 2-fold or more, genes were defined as up-regulated or down-regulated. 

Nine categories, including no change during differentiation, were assigned. A GO analysis was 

performed on the gene expression sets using DAVID (the Database for Annotation, 

Visualization and Integrated Discovery)9. 

 

  



Supplementary tables 

Supplementary Table S1. Genes in expression profile groups. 

ImmGen microarray data for neutrophils and GMPs and RNA-seq data for neutrophils and 

NeuPs were combined. DEGs were clustered into eight groups based on their expression 

profiles. Genes belonging to each group are listed. 

 

Supplementary Table S2. GO term analysis of expression profile groups. 

Genes in the expression profile groups were further analyzed for gene ontology using DAVID. 

GO terms with higher statistical significance are shown first, and genes belonging to each GO 

term are listed. 

 

  



Supplementary Figures 
Supplementary Figure S1. Monocyte contamination in neutrophil precursor analyses 

based on c-kit and Ly6G. (a) A flow cytometry analysis of neutrophil precursors based on 

expression of c-kit and Ly6G, performed as described previously10. (b) CD115+ contaminating 

monocytes in each population are shown in histograms. 

 

Supplementary Figure S2. Sorting scheme for murine bone marrow NeuPs. Murine bone 

marrow cells isolated from femurs and tibias were stained with antibodies. Dead cells (DAPI-

incorporating) were excluded. Plot of FSC-A versus FSC-H; cells were gated for singlet cells. 

CD11b+ cells negative for lineage (CD3ε-CD19-NK1.1-B220-) and CD115, and expressing an 

intermediate level of Ly6B were sorted by flow cytometry. The plot in the lower left shows a 

representative result demonstrating the purity of sorted cells. 

 

Supplementary Figure S3. Size, granularity, and surface marker expression of NeuPs. (a) 

Size (FSC) and granularity (SSC) of NeuPs, neutrophils, monocytes and eosinophils, analyzed 

by flow cytometry. (b) Flow cytometry of surface markers for basophils (DX5 and Mar-1) and 

eosinophils (Siglec-F) on NeuPs in the BM, and basophils and eosinophils in the blood. (c) 

Flow cytometry of surface markers (CD24, CD44, and CD172) on NeuPs in the BM compared 

to neutrophils and monocytes in the BM. Data are representative of at least two independent 

experiments with two or more replicates. 

 

Supplementary Figure S4. Procedure for combining ImmGen microarray data and RNA-

seq data. GMP and neutrophil gene expression data from ImmGen project were combined with 

our RNA-seq DATA. Gene alignment was done using TopHat. Cufflinks was used to measure 

expression levels as FPKM values and transform the values to a logarithmic scale. Microarray 

data provided by ImmGen were processed using the affy package in R. Gene expression ratios 

between GMPs and neutrophils and between NeuPs and neutrophils were calculated, after 

which the ratios of the two ratios (GMPs/neutrophils and NeuPs/neutrophils) were calculated. 

 

Supplementary Figure S5. Gene expression profile groups and GO terms. Genes were 

categorized based on fold changes in gene expression from GMPs to neutrophils via NeuPs; 

eight groups exhibiting changes between cell types are shown. Gene ontologies of genes within 

each group, based on DAVID, are shown. Data are combined from two to four independent 



experiments for each cell type, with cells pooled from five to ten mice in each experiment. 

 

Supplementary Figure S6. Epigenetic regulator genes in expression profile groups. DEGs 

in the expression profile groups encoding epigenetic regulators are listed according to their 

function, determined based on DAVID, AmiGO (Gene Ontology Consortium, 

http://amigo.geneontology.org/amigo), and QuickGO (EMBL-EBI, 

http://www.ebi.ac.uk/QuickGO). Known target sites and modifications are shown next to the 

gene name. 

 

Supplementary Figure S7. Analysis of cell numbers during demand-adapted 

granulopoiesis. (a) Twenty-four hours prior to sacrifice, mice were injected with PBS or G-

CSF (2.5 μg) (b) or were injected with PBS or LPS (20 μg). (c) Forty-eight hours before 

sacrifice, mice were injected with PBS (control) via the tail vein or with Listeria through 

footpads (104 cfu; local infection) or tail veins (103 cfu; systemic infection) (d) or were injected 

with PBS- or clodronate-liposomes (1 mg). Total cells and neutrophils in the bone marrows 

were counted. Depletion of monocytes in the blood by clodronate-liposomes, but not by PBS-

liposomes, was confirmed. The significance of differences between stimulated and control 

groups was analyzed using Student’s t-test. Data are representative of at least two independent 

experiments with two or more replicates (mean ± SD of N = 3 to 4 mice/group). 

 

Supplementary Figure S8. Analysis of two morphologically distinct NeuP populations 

under emergency granulopoiesis. Cytological analysis of NeuPs isolated from the mice that 

were injected with PBS or G-CSF (2.5 μg) 24 hours prior to sacrifice. Nuclear morphology of 

isolated cells was analyzed with May-Grünwald-Giemsa staining and the ratio of cells 

containing either ring- or peanut-shaped nuclei was calculated (mean ± SD of N = 3 

mice/group). 

 

Supplementary Figure S9. The original full-length gel image of Fig. 4g. The original full-

length gel image of Fig. 4g, showing RT-PCR analysis of granule marker genes (Mpo, Ltf, 

Mmp9) in NeuPs and neutrophils. M, a marker lane for DNA molecular weights. 
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