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Theoretical section 

Theoretical Modeling 

For that sensor due to a technology of producing large unidirectional strain the free cracks 

cut the sensor strip through so that the normalized conductance 𝑆𝑆 of the sensor vs strain 

𝜀𝜀 

𝑆𝑆 = ∫ 𝐏𝐏(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝜀𝜀                            (S1) 

was determined by the probability distribution function (pdf) 𝐏𝐏(𝑥𝑥) of the steps on a 

crack lip15 making contacts between the lips. For a free crack we found an equation for 

𝐏𝐏(𝑥𝑥) with the only “size” parameter – the strain  𝜀𝜀0 that corresponds to the crack gap 

width 𝑘𝑘 𝜀𝜀0 being about the grain size 𝑥𝑥0 =  𝑘𝑘 𝜀𝜀0   

𝐏𝐏(𝑥𝑥) = 𝐏𝐏(1/𝑥𝑥)/𝑥𝑥2 ,                      (S2) 

where 𝑥𝑥 = 𝜀𝜀
𝜀𝜀0

 and 𝑘𝑘 is the proportionality factor to be defined by relating the crack gap 

width to the strain15. 𝑘𝑘 can be different for different material realization of parallel crack 

systems and should be obtained from experiment. 

     Physically, Eq. (S2) states that tiny steps of the crack asperity made by the shifts of 

grains are distributed the same as the large steps made by grain piling, because the 

substrate elastic field being scale-less and thus having no characteristic length may not 

distinguish between tiny and large meandering asperity. Among solutions of Eq. (S2) one 

may choose either the log-normal pdf  

 𝐏𝐏(𝜀𝜀) = 1
𝜀𝜀𝜀𝜀√𝜋𝜋

exp �− (ln (𝜀𝜀/𝜀𝜀0))2

𝜀𝜀2
�                  (S3) 

or a nearly identical log-logistic pdf  

𝐏𝐏(𝜀𝜀) = 𝐵𝐵
𝜀𝜀0

(𝜀𝜀/𝜀𝜀0)𝐵𝐵−1

(1+(𝜀𝜀/𝜀𝜀0)𝐵𝐵)2                      (S4), 
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where 𝜇𝜇 and 𝐵𝐵 are parameters of the pdf. 

     Both of the distributions of Eqs. (S3) and (S4) belong to the class of so-called skew 

distributions with long tails. As we discussed in Ref. 1, the non-zero probability of large 

but rare contacts between crack lips lies in the essence of the mechanism of the conduction 

through the crack and is therefore in concordance with the tailed distributions. With Eq. 

(S3), Eq. (S1) gives for the resistance 𝑅𝑅 = 1/𝑆𝑆 as a function of strain the following: 

𝑅𝑅 = 2/�1 − erf�
ln� 𝜀𝜀𝜀𝜀0

�

𝜀𝜀
��  ,                   (S5) 

 erf (𝑥𝑥) is the error function. Eq. (S5) renders the normalized resistance that remarkably 

fits the experiment15 for the strains up to 2%. At the same time, one can show that the 

log-logistic pdf of Eq. (S4) together with Eq. (S1) leads to  

𝑅𝑅 = 1 + (𝜀𝜀/𝜀𝜀0)𝐵𝐵                            (S6) 

that fits the experiment15 with fitting parameters 𝜀𝜀0 = 0.39 and 𝐵𝐵 = 2.39 (see Fig S12) 

with the same accuracy as the log-normal pdf of Eq. (S5). Yet, the power-law function of 

Eq. (S6) is much simpler than the error function in Eq. (S5). We may suggest this 

universal power law for data fitting by experimentalists who study free parallel cracks. 

   Quite surprisingly, after we changed the uniform Pt film strip into a patterned one on 

a much more stretchable polymer (Fig. 1) of the present work, the strain dependence of 

the resistance dramatically switched from the power-law of Eq.(S6) into the exponential 

one in a much broader strain range up to 5% and more. One can notice the straight-line 

behavior up to 5 % strain from the semi-log plot given in Fig 2c.  Here we discuss the 

underlying mechanism of this phenomenon. 

A crucial difference of the cracks generated in the current study from those in the 

previous study15 is shown in Fig S10 b,c: the cracks between pattern patches closely 

follow the “crests” of the wrinkles on the metal/polymer film. That means that the crack 
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path was extremely directed and only close neighboring Pt grains were disconnected 

along the crack lip (Fig S11). In this respect, the local deviations are about the size of a 

grain and thus, may not satisfy the scaling Eq. (S2) for free crack generation. On the other 

hand, the pattern patches were pressed to each other in the horizontal and perpendicular 

direction to the strain direction as shown in Fig S10b, because of the Poisson ratio of 0.52 

which is an inherent characteristic of rubber-like materials. Therefore, the system 

remained unchanged effectively in one dimension with cut-through cracks that are now 

located on a train of squares lined up in the horizontal direction (Fig S10).  

In analogy with the study15, it is sufficient to calculate the step pdf. According to 

Fig S11, along the lip of a crack (the crack trajectory) each 𝑖𝑖th grain can stay shifted up 

or down (in the strain direction) with probability ½ and shift 𝑦𝑦𝑖𝑖. The crack step size 

means the shifting distance of the trajectory upwards (downwards) by several neighboring 

grains. As seen in Fig S11, the sum of, say, three grain shifts, made in one direction, 

produces the step of size 𝑥𝑥. Assume that the local grain shifts are distributed with a local 

pdf 𝑃𝑃(𝑦𝑦) . Neighboring grains of normalized size 1 vertically shifted in small steps 

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 (Fig S11) should have the global pdf 𝐏𝐏(𝑥𝑥) of the step size 𝑥𝑥 

 𝐏𝐏(𝑥𝑥) = ∭ ∑ 𝛿𝛿(𝑦𝑦1 + ⋯+ 𝑦𝑦𝑛𝑛 − 𝑥𝑥) 1
2𝑛𝑛
𝑃𝑃(𝑦𝑦1) …𝑃𝑃(𝑦𝑦𝑛𝑛)𝑑𝑑 𝑛𝑛 𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑛𝑛 1

0    (S7) 

where  

 ∫ 𝑃𝑃(𝑦𝑦)𝑑𝑑1
0 𝑦𝑦 = 1                        (S8) 

𝛿𝛿 is the delta-function, and  𝑛𝑛 = 1,2, …  The delta-function presents the microscopic 

pdf of a step to be constructed of 𝑛𝑛  positive shifts in one direction satisfying  the 

equation 𝑦𝑦1 + ⋯+ 𝑦𝑦𝑛𝑛 − 𝑥𝑥 = 0. As we assumed, the probability of shifting a grain up 

(down) is ½. Therefore, defining the step as the total shift up, the probability of a given 
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configuration with small steps of 𝑛𝑛 should be proportional to 1
2𝑛𝑛

.  The details of further 

integration of Eq. (S7) in the complex plane are given in the Supplementary Information 

(Theoretical section). Conveniently, by closing the integration contour of the 

corresponding Cauchy integral in Eq. (S4) by an infinitely large semicircle in the lower 

half plane (Fig S12), one gets 𝐏𝐏(𝑥𝑥) as a sum of the residues at poles, and the largest of 

the exponential terms, governed by the pole −𝑖𝑖𝑧𝑧0 , where 𝑧𝑧0 is a positive real number, 

will be dominating at large 𝑥𝑥. Then if one restricts oneself by this pole, one gets the 

normalized probability 

𝐏𝐏(𝑥𝑥) = exp(−𝑧𝑧0𝑥𝑥) 𝑧𝑧0 .                 (S9) 

It is clear from Eq. (S1) that the conductance 𝑆𝑆 will also be the exponential function of 

strain at large strains, 

𝑆𝑆 = ∫ exp(−𝑧𝑧0𝑥𝑥) 𝑧𝑧0𝑑𝑑𝑥𝑥
∞
𝜀𝜀 = exp (−z0𝜀𝜀)           (S10) 

as well as the resistance 

 𝑅𝑅 = 1/𝑆𝑆 =  exp (z0𝜀𝜀) ≡ exp (𝜀𝜀/𝜀𝜀0).         (S11) 

One can see the difference between Eq. (S6) and Eq. (S11), the power-law and the 

exponential. A quite general example of  𝑃𝑃(𝑦𝑦) = 1  that assumes arbitrary grain 

positions with respect to each other neighbor and then, a homogeneous distribution of the 

grain shifts along the crack lip in Fig S11, gives the dominating pole of 𝑧𝑧0 = 1.256 (see 

the Supplementary Information and Fig S12). In Fig 2e we give the normalized resistance 

vs strain calculated with 𝑃𝑃(𝑦𝑦) = 1  (the red line) along with the pure exponential 

function of Eq. (S11) (the green line in Fig 2e) to see a close coincidence between the 

experimental data and the theory.  
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  While fitting the experiment with, for example, the resistance vs strain calculated 

with the uniform pdf of grains with the asymptotic function Eq. (S11), one had to rescale 

the strain by 𝛼𝛼 = 0.7 times to match the linear slope of the experiment in Fig 2c. 

Physically that means that we restrict the shift of the grains by 30% and thus flatten the 

crack lips. The resistance therefore responses to such a flattening by increasing the slope 

of the resistance in the semi-logarithmic scale. Parameter 𝛼𝛼  measures the degree of 

flatness of the crack lip. From Fig S11 one can notice that the maximum slope of the step 

asperity is restricted by 𝛼𝛼 which is the tangent of the maximum slope angle. In case of 

𝑃𝑃(𝑦𝑦) = 1 the maximum slope angle is 45 degree with the tangent 𝛼𝛼 = 1. Of course if 

the crack lips were completely flat with no shift and 𝛼𝛼 = 0, then we would have a sudden 

disconnection of the lips and the infinite slope of 𝑅𝑅/𝑅𝑅0. According to our fitting in Fig 

2e, the parameter 𝜀𝜀0 =  𝛼𝛼
𝑧𝑧0

= 0.7
𝑧𝑧0
≈ 0.6  for the strain measured in %. With these 

estimations at hand we can calculate the characteristic grain size 𝑥𝑥0 . As far as SEM 

images reveal the gap distance 𝑥𝑥 to be proportional to the strain 𝑥𝑥 = 𝑘𝑘 𝜀𝜀  , where 𝑘𝑘 ≈

50 nm with 𝜀𝜀  in %, then the grain size 𝑥𝑥0 = 𝑘𝑘 𝜀𝜀0 ≈ 30  nm, quite close to the 

constituent primary particle size of the granular Pt film. 

 

Complex integration 

Then, after rewriting 𝛿𝛿 - function as a Fourier integral, Eq. (7) reads, 

𝐏𝐏(𝑥𝑥) = 1/2𝜋𝜋 ∫ ∭ ∑ exp(𝑖𝑖𝛼𝛼(𝑦𝑦1 + ⋯+ 𝑦𝑦𝑛𝑛 − 𝑥𝑥)) 1
2𝑛𝑛
𝑃𝑃(𝑦𝑦1) …𝑃𝑃(𝑦𝑦𝑛𝑛)𝑑𝑑 𝑛𝑛 𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑛𝑛 1

0
∞
−∞ 𝑑𝑑𝛼𝛼 

(S12) 

or after simplification of Eq. (S12) due to the independent integration over each of 𝑦𝑦𝑖𝑖 

 𝐏𝐏(𝑥𝑥) = 1/2𝜋𝜋 ∫ ∑ exp(−𝑖𝑖𝛼𝛼𝑥𝑥) �1
2
𝑓𝑓(𝛼𝛼)�

𝑛𝑛
 𝑛𝑛  ∞

−∞ 𝑑𝑑𝛼𝛼         (S13) 
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where  

𝑓𝑓(𝛼𝛼) = ∫ 𝑃𝑃(𝑦𝑦)1
0 exp (𝑖𝑖𝛼𝛼𝑦𝑦)𝑑𝑑𝑦𝑦 .              (S14) 

The geometrical series of Eq. (S2) can be directly transformed into  

𝐏𝐏(𝑥𝑥) = 1/2𝜋𝜋 ∫ exp(−𝑖𝑖𝛼𝛼𝑥𝑥)
1
2𝑓𝑓(𝛼𝛼)

1−12𝑓𝑓(𝛼𝛼)

∞
−∞ 𝑑𝑑𝛼𝛼            (S15) 

The Cauchy integral in Eq. (S15) can be analyzed in general terms. One can notice that 

the decay of function 𝐏𝐏(𝑥𝑥)  at large 𝑥𝑥  may be nearly exponential and nearly 

independent of a particular form of 𝑃𝑃(𝑦𝑦): 

 𝐏𝐏(𝑥𝑥)~ exp (−z0𝑥𝑥) for 𝑥𝑥 ≫ 1 and  z0 > 0               (S16) 

if there is the dominating role of one pole in the denominator of Eq. (S4) 

 1 − 1
2

f(−𝑖𝑖𝑧𝑧0) = 0                        (S17) 

with the lowest real 𝑧𝑧0 > 0 in Eq. (S6). All other poles (solutions of Eq. (S17) should be 

complex and also lie in the lower half of the complex plane (see the example in Fig S12). 

One can see from Eq. (S14) that such a single pure imaginary pole 𝛼𝛼 = −𝑖𝑖𝑧𝑧0 should 

always exist because otherwise it is impossible to make the integral in Eq. (S14) equal to 

2 while having the pole in the upper half. Indeed, if  𝛼𝛼 = 𝑖𝑖𝑧𝑧0 , then |exp(𝑖𝑖𝛼𝛼𝑦𝑦)| =

|exp(−𝑧𝑧0𝑦𝑦)| ≤ 1 and it is impossible to make the integral 𝑓𝑓(𝛼𝛼) of Eq. (S14) larger than 

1, because the integrand contains the normalized probability function and even if 

|exp(𝑖𝑖𝛼𝛼𝑦𝑦)| were exactly 1 for all 𝑦𝑦 Eq. (S3) would give at maximum only 1. But then 

Eq. (S17) cannot be satisfied, because it demands that f(𝛼𝛼) = 2 > 1. 

   Consider a quite general example of  𝑃𝑃(𝑦𝑦) = 1  that assumes arbitrary grain 

positions with respect to each other neighbor and then, a homogeneous distribution of the 

grain shifts along the crack lip in Fig S12. For this case Eq. (S14) gives: 

𝑓𝑓(𝛼𝛼) = (exp(𝑖𝑖𝛼𝛼) − 1)/𝑖𝑖𝛼𝛼                     (S18) 
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and then Eq.(S17) takes the form: 

2𝑧𝑧0 + 1 − exp(𝑧𝑧0) = 0.                      (S19) 

Solutions of Eq. (S18) can be found numerically. The lowest 𝑧𝑧0 = 1.256 and the other 

poles are 2.789 ± 7.438𝑖𝑖, 3.360 ± 13.866𝑖𝑖…. (see Fig S12). 

 

Estimating the low end detection limit 

It is observed that the maximum resistance change by strain 0.04 % was 2.1468 Ω, and 

the noise level was below 0.7037 Ω. Signal-to-noise ratio become as ~3, so the low end 

detection limit is 0.04/3 = 0.013%. 
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Figure S1. Fabrication procedure for induced crack sensor. (a) Dripping PUA on 

glass and cover with silicon mold. UV exposure is followed for curing PUA. (b) Metal 

layer (Cr 10 nm/Pt 20 nm) is deposited. (c) 10 % of strain is applied bi-axially. 

  

a 

b 

c 
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Figure S2. Strain-dependent gauge factor by taking the derivative of R/R0 with 

respect to strain [Gauge Factor = (dR/R0)/dε]. 
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Figure S3. Loading/unloading data of various strain applied. (a) Reversible 

loading/unloading behaviour at final strain 0.25 %. (b) Hysteresis of loading/unloading 

at final strain 5 %. 
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Figure S4. Marathon tests (<5,000 cycles) with repeated loading/unloading of 
various final strain. (a) Marathon test with various final strain (black – at final strain 
10 %, red – at final strain 5 %, blue – at final strain 2.5 %) (b) Loading/unloading at 10 % 
final strain after 5,000 cyclic test. 
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Figure S5. Non-patterned sensor. (a) SEM image of cracks. (Red arrows: curved 

crack, Blue arrows: straight crack) (b) The normalized resistance vs strain of non -

patterned sensor. 
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Figure S6. Variation of formed cracks on three different sets of samples (a,b,c). 

Ten SEM images for each sample shows that only one or two elliptical-shaped cracks 

from ten cracks are formed. (red square indicates the elliptical shaped cracks). (d) The 

normalized resistance variation with respect to strain measured upto 5 % final strain for 

three different samples. 
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Figure S7. Crack morphologies vary to different hole pattern. (a) Irregular crack 

formations for pattern gap 10 μm and 15 μm. Blue-arrow indicates contact points left of 

pattern gap 10 μm with 10 % strain applied. Red-arrow is for pattern gap 15 μm. (b) 

Straight crack formation for pattern gap 20 μm. Black-arrow indicates contact points left. 

  

Irregular crack opening  regular crack opening  a b 



16  
 

 

Figure S8. Relevant crack opening by rotating pattern at 60 degrees. (a) Schematic 

of crack opening by rotating pattern at 60 degrees. (b) log-log scale re-plotting of Fig 3f 

showing close coincidence of the graphs after the corresponding abscissa rescaling. 
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Figure S9. The normalized resistance vs strain. The power dependence of Eq. (6) 

(red line) compared with the data from our previous work 2 with a parallel crack sensor. 
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Figure S10. SEM image of crack formation on metal film. (a) SEM image of crack 

within 0 % strain. (b) SEM image of crack within 10 % strain. (c) Crack formation on 

crest between hole gap.. 
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Figure S11. Lips of a crack modelled with the grains of size 1. The step size determines 

the connection-disconnection events between the opposite lips. 
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Figure S12. Complex plane part encircled by the integration contour. 
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No. Active materials 
minimum 
detection 

maximum 
detection 

sensitivity ref 

1 
PSR nanowire 

(NW)-FET 
0.5 kPa 15 kPa 11.5 μS kPa-1 [6] 

2 Gold NWs 13 Pa 50 kPa 1.14 kPa-1 [7] 

3 
PDMS microstructure 

OFET 
3 Pa 20 kPa 0.55 kPa-1 [8] 

4 Suspended gate OFET 0.5 Pa 20 kPa 158.6 kPa-1 [9] 

5 
Pressure-sensitive 

rubber (PSR) OFET 
10 kPa 30 kPa  [10] 

6 this work 0.2 Pa 10 kPa 136018 kPa-1  

 

Table S1. A chart of transparent strain sensors’ specifications of strain range and 

gauge factor.  
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No. Active materials 
maximum 
detection 

Gauge Factor ref 

1 Cracked metal film 2% 2000 [1] 

2 ZnO NWs array 0.8% 1813 [3] 

3 Single ZnO fine wire 1.2% 1250 [4] 

4 Single ZnSnO3 NW 0.32% 3740 [5] 

5 This work 10% 50000 (at 5% strain)  

 

Table S2. A chart of transparent pressure sensors’ specifications of pressure range 

and sensitivity. 
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