Prediction of *N*-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

Supplementary Information

Max K. Leong^{1,2*}, Ren-Guei Syu¹, Yi-Lung Ding¹, and Ching-Feng Weng^{2*}

¹Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan

²Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan

*Correspondence: Max Leong, leong@mail.ndhu.edu.tw; Ching-Feng Weng, cfweng@mail.ndhu.edu.tw

Parameter	Definition [†]
r^2	$1 - \sum_{i=1}^{n_{\text{TR}}} \left(\hat{y}_i - y_i \right)^2 / \sum_{i=1}^{n_{\text{TR}}} \left(y_i - \left\langle \hat{y} \right\rangle \right)^2$
q^2	$1 - \sum_{i=1}^{n_{\text{EXT}}} \left(\hat{y}_i - y_i \right)^2 / \sum_{i=1}^{n_{\text{EXT}}} \left(y_i - \left\langle \hat{y} \right\rangle \right)^2$
$q^2_{ m cv}$	the correlation coefficient of 10-fold cross validation
Δ_i	$y_i - \hat{y}_i$
RMSE	$\left(\sum_{i=1}^n \Delta_i^2 / n\right)^{1/2}$
MAE	$\frac{1}{n}\sum_{i=1}^{n}\left \Delta_{i}\right $
r_m^2	$r^2\left(1\!-\!\sqrt{\left r^2-r_o^2 ight } ight)$
$r_m'^2$	$r^2\left(1-\sqrt{\left r^2-r_o'^2 ight } ight)$
$\langle r_m^2 \rangle$	$\left(r_m^2+r_m^{\prime2}\right)/2$
$q_{ m F1}^2$	$1 - \sum_{i=1}^{n_{\text{EXT}}} \left(y_i - \hat{y}_i \right)^2 / \sum_{i=1}^{n_{\text{EXT}}} \left(y_i - \langle y_{\text{TR}} \rangle \right)^2$
$q_{ m F2}^2$	$1 - \sum_{i=1}^{n_{\text{EXT}}} \left(y_i - \hat{y}_i \right)^2 / \sum_{i=1}^{n_{\text{EXT}}} \left(y_i - \left\langle y_{\text{EXT}} \right\rangle \right)^2$
$q_{ m F3}^2$	$1 - \left[\sum_{i=1}^{n_{\text{EXT}}} \left(y_i - \hat{y}_i\right)^2 / n_{\text{EXT}}\right] / \left[\sum_{i=1}^{n_{\text{TR}}} \left(y_i - \langle y_{\text{TR}} \rangle\right)^2 / n_{\text{TR}}\right]$
CCC	$\frac{2\sum_{i=1}^{n_{\text{EXT}}} (y_i - \langle y_{\text{EXT}} \rangle) (\hat{y}_i - \langle \hat{y}_{\text{EXT}} \rangle)}{\sum_{i=1}^{n_{\text{EXT}}} (y_i - \langle y_{\text{EXT}} \rangle)^2 + (\hat{y}_i - \langle \hat{y}_{\text{EXT}} \rangle)^2 + n_{\text{EXT}} (\langle y_{\text{EXT}} \rangle - \langle \hat{y}_{\text{EXT}} \rangle)^2}$

Table S1. Statistic parameters and their definitions.

[†]where *n*, n_{TR} , n_{EXT} , y_i , \hat{y}_i , $\langle \hat{y} \rangle$, r_o^2 , *k*, $r_o'^2$, represent the number of samples in the data set, the number of samples in the training set, the number of samples in the external set, the observed value, the predicted value, the average of predicted values, the correlation coefficient of the

regression line (predicted *vs.* observed values) through the origin, the slope of the regression line (predicted *vs.* observed values) through the origin, the correlation coefficient of the regression line (observed *vs.* predicted values) through the origin.

		Observed + -				
Predicted	+	true positive (TP)	false positive (FP)			
	_	false negative (FN)	true negative (TN)			

 Table S2.
 Confusion matrix for qualitative predictive model.

Table S3. The Cooper statistics and Kubat's G-mean calculated from the confusion matrix (Table S2)

Parameter	Definition [†]
Sensitivity	TP / (TP + FN)
Specificity	TN / (FP +TN)
Accuracy	(TP + TN) / N
Matthews Correlation Coefficient	$\frac{\text{TP} \times \text{TN} - \text{FP} \times \text{FN}}{\sqrt{(\text{TP} + \text{FP}) \times (\text{TP} + \text{FN}) \times (\text{TN} + \text{FP}) \times (\text{TN} + \text{FN})}}$
G-mean	$(Sensitivity \times Specificity)^{\frac{1}{2}}$

 $^{\dagger}N = \mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}.$

Model	SVM type	Kernel type	γ	Cost	3
SVM-Pose ^{1PB7}	ε-SVR	${f RBF}^\dagger$	996	5.200×10^{-3}	2.500×10^{-3}
SVM-Pose ^{1PB8}	ε-SVR	RBF	320	7.813×10^{-4}	6.250×10^{-3}
SVM-Pose ^{1PB9}	ε-SVR	RBF	5000	6.250×10^{-6}	3.906×10^{-3}
SVM-Pose ^{1PBQ}	ε-SVR	RBF	5	3.125×10^{-3}	3.906×10^{-3}
SVM-Pose ^{1Y1M}	ε-SVR	RBF	4000	3.125×10^{-5}	7.813×10^{-3}
SVM-Pose ^{1Y1Z}	ε-SVR	RBF	312.5	1.563×10^{-4}	7.813×10^{-3}
SVM-Pose ^{1Y20}	ε-SVR	RBF	312.5	6.250×10^{-6}	3.906×10^{-3}
SVM-Score	<i>ε</i> −SVR	RBF	15551	2.572×10^{-4}	1.850×10^{-1}

Table S4. Optimal runtime parameters for the SVM models.

[†]Radial basis function

			SVN	A-Pose				
Descriptor	1PB7	1PB8	1PB9	1PBQ	1Y1M	1Y1Z	1Y20	Description
								Protein-ligand
								H-bond
S (nd_ext)	Х	Х	Х	Х	Х		Х	contribution to
								GoldScore value
								Protein-ligand
C (udue out)		Y	X.	X7	v	N/		vdw contribution
S (vuw_ext)		Х	Х	Х	Х	Х		to GoldScore
								value
								Internal ligand
S								vdw contribution
(vdw_int)	Х	Х		Х	Х	Х	Х	to GoldScore
								value
								Internal ligand
C (ton int)								torsion-strain
S (tor_int)	Х	Х		Х		X	Х	contribution to
								GoldScore value
								Free energy
								change (that
								occurs on ligand
ΔG		Х	Х	Х	Х		Х	binding)
								contribution to
								ChemScore value
								Protein-ligand
C (1 1 1)								H-bond
S (hbond)		Х	Х	Х			Х	contribution to
								ChemScore value
								Protein-ligand
								lipophilic
S (lipo)	X	Х	Х	Х	Х		Х	contribution to
								the ChemScore
								value
								Protein-ligand
ΔE (clash)		Х	Х	Х	Х	Х	х	clash penalty to
								the ChemScore

Table S5.	Descriptors selected by 7 SVM-Pose models.

								value
ΔE (int)	X	X		X	X		X	Internal ligand torsional strain penalty to the <i>ChemScore</i> value
LigScorel		Х	X	х		Х		
LigScore2	х		Х	Х	Х	Х	Х	
PLP	х		Х	Х	Х	Х	х	Empirical scoring
PLP2		Х	Х			Х		function
Jain	х	Х	Х	Х	Х	Х		
LUDI2	х							
PMF		Х	Х	Х		Х	Х	Knowledge-based
PMF04			х		X	X		scoring function

Table S8. The correlation coefficients (r) between selected descriptors and pK_i for specific chemotypes and the other molecules and between descriptors for all molecules enlisted in the SVM-Score development.

r	Molecules				
	Total (<i>n</i> = 37)				
HBD vs. Gold.Chemscore.Hbond	0.782				
	Bound ligand $(n = 7)$	The others			
Atype_N_75 vs. HBA	0.881	0.318			
	Total (<i>n</i> = 37)				
CIC1 vs. MR	0.800				
	Unbound ligands $(n = 30)$	The others			
CC	-0.622	0.056			
	Acetylenic aromatics $(n = 5)$	The others			
JGI4 vs. pK _i	0.794	0.264			
	Bound ligand $(n = 7)$	The others			
S_ssCH ₂ vs.pK _i	-0.786	-0.071			
HATS6u <i>vs.</i> pK _i	-0.797	-0.294			

Molecule		K _i
Molecule	Obs.	Pred.
Disodium;6,7-dinitroquinoxaline-2,3-diolate	6.41	6.02
7,8-Dichloro-1-ethyl-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-one	5.34	3.57
7,8-Dichloro-1-propyl-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-one	5.41	3.72
1-Butyl-7,8-dichloro-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-one	5.83	2.42
7,9-Dichloro-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-one	5.55	2.53
Nitro-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-one	5.13	3.68
7,8-Dinitro-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-one	5.29	3.18
7,8-Dichloro-5H-imidazo[1,2-a]quinoxalin-4-one	5.90	3.91
6,7-Dichloroquinoxaline-2,3-dione	6.68	4.99
5,7-Dichlorokynurenic acid	7.40	7.49

The observed pK_i values ([³H]glycine) and predictive pK_i values

([³H]MDL) for those molecules in the mock test.

Table S9.

Figure legends

Figure S1. Molecular distribution for unbound (circles) and unbound samples (triangles) in the training set (filled) and test set (open) in the chemical space spanned by three principal components.

Figure S2. Histograms of (a) pK_i , (b) area, (c) molecular volume (V_m), and (d) molecular weight (MW) in density form for all molecules in the training set and test set.

Figure S3. Average pK_i versus the distribution of HBA for those bound ligands.

Figure S1. Molecular distribution for unbound (circles) and unbound samples (triangles) in the training set (filled) and test set (open) in the chemical space spanned by three principal components.

Figure S2. Histograms of (a) pK_i , (b) area, (c) V_m , and (d) MW in density form for all molecules in the training set and test set.

Figure S3. Average pK_i versus the distribution of HBA for those bound ligands.