Gypenoside L inhibits autophagic flux and induces cell death in human esophageal cancer cells through endoplasm reticulum stress-mediated Ca²⁺ release

Supplementary Materials

Supplementary Figure S1: Isolation and characterization of Gyp-L. The total saponins of *G. pentaphyllum* were kindly provided by William chi-shing Tai (Hong Kong Baptist University). A portion of total saponins (350 g) was firstly subjected to column chromatography over silica gel (6000 g, 300–400 mesh) and eluted with the isocratic gradient solvent system of CHCl₃, methanol and water (26:8:1) to yield twenty-four major fractions (Fraction 1-24). Fraction 14 (4.7g) was then subjected to column chromatography over ODS (239.48g,100-200 mesh) and eluted with the isocratic gradient solvent system of 40% CH3CN in water to yield four major components (**A–D**). (B) (265 mg) was identified as gypenoside L by ¹H, ¹³C NMR and LC-MS. ¹³C NMR (75 MHz, C₅D₅N): δ 48.24 (C1), 67.15 (C2), 96.06 (C3), 41.47 (C4), 56.67 (C5), 18.96 (C6), 35.52 (C7), 40.43 (C8), 50.84 (C9), 38.30 (C10), 32.72 (C11), 71.74 (C12), 48.97 (C13), 52.18 (C14), 31.77 (C15), 27.52 (C16), 55.28 (C17), 16.26 (C18), 18.16 (C19), 73.35 (C20), 7.32 (C21), 36.37 (C22), 23.47 (C23), 126.82 (C24), 131.22 (C25), 26.30 (C26), 18.10 (C27), 28.77 (C28), 17.99 (C29), 17.43 (C30), 106.19 (C1'), 82.91 (C2'), 78.89 (C3'), 72.35 (C4'), 78.66 (C5'), 63.40 (C6'), 104.99 (C1''), 77.21 (C2''), 79.04 (C3''), 71.39 (C4''), 78.81 (C5''), 62.82 (C6''). ESIMS: *m/z* 823.40 [M+Na]⁺ (cacled for C₄)H₇₂O₁₄, 800.49).

Supplementary Figure S2: Gyp-L induces lysosomal swelling and dysfunction. (A) ECA-109 or TE-1 cells were transfected with lysosome-GFP (LAMP1-GFP) for 24 h before treated with Gyp-L for 24 h. Images were captured using fluorescence microscope. Scale bar: 20 μ m. (B) Lyso-Tracker Red staining. Cells treated with Gyp-L for 24 h were stained with 50 nM Lyso-Tracker Red. (C) AO staining assay. ECA-109 cells were treated with Gyp-L (60 μ g/ml) for 6 h or 12 h, and cells were washed, stained with AO (5 μ g/ml) for 30 min. Fluorescence images were captured by fluorescence microscopy and representative photomicrographs were shown. Scale bar: 20 μ m.

Supplementary Figure S3: Gyp-L induces nonapoptotic cell death. (A) After ECA-109 cells treated with Gyp-L (80 μ g/ml) in the presence or absence of Z-VAD for 24 h, total cell lysates were extracted to measure the activity of caspase 3 or caspase 9. Dactinmycin (ACTD) (0.75 μ g/ml), a mRNA synthesis inhibitor, was used as a positive control. (B) ECA-109 cells were treated with Gyp-L for 12 h and mitochondrial membrane potential was measured by Flow cytometry using JC-1 staining. (C) Effects of Gyp-L on cell cycle distribution. ECA-109 Cells were treated with 0, 20, 40, 60 and 80 μ g/ml Gyp-L for 24 h, fixed in 70% ethanol, stained with PI, and cell cycle distribution was assessed by flow cytometry. The percentage of cells in each cell cycle phase is indicated as the mean \pm SD of three independent experiments.

Supplementary Figure S4: Effect of 3-MA on Gyp-L-induced cell death. (A) Efficiency of knockdown of ATG5 and ATG7. (B) ECA-109 and TE-1 cells were treated with Gyp-L in the presence or absence of 3-MA (10 mM) for 12 h, and cell lysates were subjected to western blot for LC3-II and p62. (C–D) 3-MA dose not inhibit Gyp-L-induced cytoplasmic vacuoles and cell death. ECA-109 or TE-1 cells were treated with Gyp-L and 3-MA for 24 h and cell viability was measured with the MTT assay.

Supplementary Figure S5: Gyp-L inhibits autophagic flux. (A) Effect of Gyp-L on mitochondrial mass. (B) CQ rendered cancer cells more sensitive to the cytotoxicity of Gyp-L. ECA-109 or TE-1 cells were treated with Gyp-L in the presence or absence of CQ for 24 h. (C) Expression of several lysosomal positioning genes. ECA-109 cells were treated with Gyp-L ($60 \mu g/ml$) for 12 h and the total RNA was extracted. A quantitative real-time PCR (RT-PCR) was performed to determine the mRNA levels of *RAB5*, *RAB7*, *RAB11* and *HDAC6*. Data presented are representative of three independent experiments. (D) ECA-109 cells were treated with Gyp-L for 12 h and cell lysates were subject to western blot for RAB5 and GAPDH. (E) ECA-109 cells were transfected with siRNA targeting RAB5 for 24 before treated with Gyp-L for another 24 h. Cell viability was measured with the MTT assay.

Supplementary Figure S6: Normal HEEpiC cells are protected from Gyp-L-induced cytotoxic effects. (A) HEEC cells were treated with Gyp-L for 12 h. (B) Western blots of total cell lysates on the expression of LC3-II and p62. (C) Western blots of total cell lysates on the expression of ER stress-related proteins.

Supplementary Figure S7: Effect of ROS scavenger on Gyp-L-induced cytoplasmic vacuolation. ECA-109 or TE-1 cells were treated with Gyp-L in the presence or absence of NAC (5 mM), TEMPOL (2 mM), Trolox (1 mM) for 12 h.

Supplementary Figure S8: Proposed mechanism by which Gyp-L inhibits autophagic flux and induces cell death in esophageal cancer cells. Gyp-L initially increases the intracellular ROS production, and subsequently causes the ER stress, UPR pathway activation, and Ca^{2+} release from ER. Then the increased cytoplasm Ca^{2+} induces the swelling and dysfunction of lysosomes, leading to the inhibition of autophagic flux and finally lysosome-associated cell death.

Supplementary Table S1: primers of RT-PCR

Genes	Sequences
HDAC6	Forward: CCACAACCAGGCAGGCAGCGAAGAAG
	Reverse: ATCCATCCCTTGCAGTCCCACG
SERCA	Forward: TCAAGGGAGTTCAATGTGCCCTCT
	Reverse: AAGGTGGCATGACCAGCATAGACT
RAB5	Forward: ACCACCGCCATAGATACACTCTCA
	Reverse: ACTAGGCTTGATTTGCCAACAGCG
RAB7	Forward: AGTTCCCTGGAACCAGAACTTGGA
	Reverse: TGTGACTAGCCTGTCATCCACCAT
RAB11	Forward: GGAAAGCAAGAGCACCATTGGAGT
	Reverse: TTTGTAGAGTCTAGGGCCGAAGTTTC
IP3R1	Forward: TGACGAGAACCTGCCCTAT
	Reverse: TCCTTTCGCCATCTTGCT
GAPDH	Forward: AGCCTCAAGATCATGAGCAATG
	Reverse: TCACGATACCAAAGTTGTCATGGA

Supplementary Table S2: siRNA sequences

Gene	Sense (5'-3')	Antisense (5'–3')
LC3-1	AGCUGUGGAUGAUCCACGU	ACGUGGAUCAUCCACAGCU
ATG5-1	GGAUGCAAUUGAAGCUCAU	AUGAGCUUCAAUUGCAUCC
ATG5-2	GUUGGUCAAAGACCAGAUA	UAUCUGGUCUUUGACCAAC
ATG7-1	CCCUGUACUCCUCAACAAG	CUUGUUGAGGAGUACAGGG
ATG7-2	GUACCACUUCUACUAUUGG	CCAAUAGUAGAAGUGGUAC