## SUPPLEMENTAL MATERIAL

Gupta et al., https://doi.org/10.1085/jgp.201611673

Phi and r values

We modify and extend phi ( $\Phi$ ) analysis of a linear Markov reaction chain with absorbing end states (C and O) separated by *n* short-lived, intermediate states ( $T_{1-n}$ ) that we define as the TSE (Zhou et al., 2005):



Assuming that the exit rate constants from the end states  $(k_1 \text{ and } k_{2n+2})$  are much smaller than all of the other rate constants, the mean first passage rate for a complete C $\rightarrow$ O transition  $(k_f)$  is

$$k_{f} = \frac{k_{1}}{1 + \sum_{i=1}^{n} \prod_{j=1}^{i} r_{j}^{i}},\tag{S1}$$

where  $r_j$  is the ratio of the exit rates (backward/forward) from  $T_j$ . Defining the denominator as M, the  $\Phi$  values of the reaction chain (first derivative of the rate-equilibrium free energy relationships) are

$$\Phi_{q} = \frac{\sum_{i=q}^{n} \prod_{j=1}^{i} r_{j}}{M}.$$
(S2)

Note that this corrects Eq. 16 in Zhou et al. (2005).

There are five phi populations for diliganded AChR gating, so n = 4 and

$$\Phi_{1} = \frac{(r_{1} + r_{1} r_{2} + r_{1} r_{2} r_{3} + r_{1} r_{2} r_{3} r_{4})}{M} \\
\Phi_{2} = \frac{(r_{1} r_{2} + r_{1} r_{2} r_{3} + r_{1} r_{2} r_{3} r_{4})}{M} \\
\Phi_{3} = \frac{(r_{1} r_{2} r_{3} + r_{1} r_{2} r_{3} r_{4})}{M} \\
\Phi_{4} = \frac{(r_{1} r_{2} r_{3} r_{4})}{M}.$$
(S3)

 $\Phi_5 = 0$ , by definition. An example WT energy landscape is the solid line and for a  $\Phi_2$  perturbation is the dashed line:



The r values can be calculated from the phi values by solving simultaneous equations represented by a matrix equation: AY = B. A is an *n*-by-*n* square matrix and Y and B are column vectors of length *n*:

$$A_{ij} = \begin{cases} \Phi_i, \ i < j \\ (1 - \Phi_i), \ i \ge j \end{cases}$$

$$Y_i = \prod_{j=1}^i r_j$$

$$B_i = \Phi_i.$$
(S4)

Y, and hence  $r_j$  values, can be obtained by finding the matrix inverse of  $A(Y = A^{-1}B)$ . For n = 4, Eq. S4 is

$$\begin{bmatrix} (1-\Phi_1) & (1-\Phi_1) & (1-\Phi_1) & (1-\Phi_1) \\ -\Phi_2 & (1-\Phi_2) & (1-\Phi_2) & (1-\Phi_2) \\ -\Phi_3 & -\Phi_3 & (1-\Phi_3) & (1-\Phi_3) \\ -\Phi_4 & -\Phi_4 & -\Phi_4 & (1-\Phi_4) \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{bmatrix} = \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{bmatrix}.$$
(S5)

We write explicitly the set of four simultaneous equations:

 $\begin{array}{l} \left(1-\Phi_{1}\right).\,Y_{1}+\left(1-\Phi_{1}\right).\,Y_{2}+\left(1-\Phi_{1}\right).\,Y_{3}+\left(1-\Phi_{1}\right).\,Y_{4}\,=\,\Phi_{1}\\ -\Phi_{2}.\,Y_{1}+\left(1-\Phi_{2}\right).\,Y_{2}+\left(1-\Phi_{2}\right).\,Y_{3}+\left(1-\Phi_{2}\right).\,Y_{4}\,=\,\Phi_{2}\\ -\Phi_{3}.\,Y_{1}-\Phi_{3}.\,Y_{2}+\left(1-\Phi_{3}\right).\,Y_{3}+\left(1-\Phi_{3}\right).\,Y_{4}\,=\,\Phi_{3}\\ -\Phi_{4}.\,Y_{1}-\Phi_{4}.\,Y_{2}+-\Phi_{4}.\,Y_{3}+\left(1-\Phi_{4}\right).\,Y_{4}\,=\,\Phi_{4}. \end{array}$ 

Solving these equations for  $Y_i$ ,

 $Y_1 = r_1; \ Y_2 = r_1 r_2; \ Y_3 = r_1 r_2 r_3; \ Y_4 = r_1 r_2 r_3 r_4.$ 

The experimental diliganded AChR gating phi values are  $\Phi_1 = 0.95$ ,  $\Phi_2 = 0.79$ ,  $\Phi_3 = 0.58$ , and  $\Phi_4 = 0.33$  ( $\Phi_5 = 0.06$ ; Fig. 6 A). Solving for *Y* (MATLAB R2014b; The MathWorks Inc.) and using the experimental  $k_f$  value of 2 ms<sup>-1</sup> when the overall C-to-O equilibrium constant is equal to 1, the solution is  $r_1 = 3.20$ ,  $r_2 = 1.32$ ,  $r_3 = 1.19$ , and  $r_4 = 1.32$ . These values yield M = 19.96 and Scheme 3 (rate constants, ms<sup>-1</sup>).

From the hypothetical energy landscape for unliganded gating (Fig. 6 E), we calculate r values of  $r_1 = 3,200$ ,  $r_2 = 1.32$ ,  $r_3 = 1.19$ , and  $r_4 = 1.32$ , to yield Scheme 5. From these r values, we calculate (Eq. S3) unliganded phi values of  $\Phi_1 = 0.99$ ,  $\Phi_3 = 0.83$ ,  $\Phi_3 = 0.61$ , and  $\Phi_4 = 0.35$ .

## Committor

The position in the reaction chain where there is an equal probability of entering rapidly either absorbing end state is called the committor or separatrix ( $\ddagger$ ). The position of  $\ddagger$  in the TSE was calculated (by optimization) from the A matrix (Qin et al., 1996) as the position in the Markov chain in which the probabilities of reaching either absorbing state were equal after time t (long compared with sojourns in the TSE and short compared sojourns in the end states; by Chris Nicolai; http://www.qub.buffalo.edu/online/commitor.html). A  $\ddagger$  position between T states is the relative probability of either flanking state. In Scheme 3 and with all k values = 300 ms<sup>-1</sup>, the  $\ddagger$  probabilities were 80% in T<sub>3</sub> and 20% in T<sub>4</sub>.

## Transmission coefficient

In Eyring theory, a TS is the point intersection of end-state parabolic wells, and a transmission coefficient ( $\kappa$ ) corrects the rate constant for TS re-crossings. In Kramers theory, the separating barrier is a parabola and  $\kappa$  is proportional to the product of a diffusion constant and the barrier frequency (width) under the condition of moderate to high friction (Billing and Mikkelsen, 1996). Here, r values (phi values) set the overall barrier shape and  $\kappa$  is the fraction of exits from an end state that reach the committor  $\ddagger$ , which by definition is crossed with a 50% probability.

With absorbing end states, the number of exits from C that result in one complete passage to O is M. The fraction of visits to  $\ddagger$  is, then, 2/M:

$$\kappa_{C \to O} = 2 \bullet \left(1 + \sum_{i=1}^{n} \prod_{j=1}^{i} r_{j}\right)^{-1}$$
and
$$\kappa_{O \to C} = 2 \bullet \left(1 + \sum_{i=n}^{1} \prod_{j=1}^{i} \frac{1}{r_{i}}\right)^{-1}.$$
(S6)

Note that these correct Eqs. 8 and 9 in Zhou et al. (2005). From the r values for diliganded gating Scheme 3,  $\kappa_{C \to O} = 0.10$  and  $\kappa_{O \to C} = 0.66$ , and for unliganded gating Scheme 5,  $\kappa_{C \to O} = 1.1E$ -4 and  $\kappa_{O \to C} = 0.7$ . With regard to the mean number of the exit attempts required for a full crossing (=2/ $\kappa$ ), these four values correspond to approximately 20, 3, 18,000, and 3, respectively.

With ACh, the assumption that the exit rate constant from C << than the other rate constants is not valid. Specifically, the exit rate from C ( $k_1$ ) is likely to be similar to the rate for exiting the TSE ( $k_{TSE}$ ). Accordingly,

$$\kappa_{C \to O} = 2 k_f \left( \frac{1}{k_1} + \frac{1}{k_{TSE}} \right).$$
(S7)

The mean number the of exit attempts required for a full  $C \rightarrow O$  crossing is the inverse of half this value.

In WT AChRs with two bound ACh,  $k_f = 50 \text{ ms}^{-1}$  (-100 mV, 23°C). However,  $k_1$  is not known, and  $k_{TSE}$  depends on the absolute values of the rate constants in Scheme 3. In Fig. 6 E, we have assumed  $k_1 = 1,000 \text{ ms}^{-1}$ , which is close to maximal (Chakrapani and Auerbach, 2005). With  $k_3$ ,  $k_5$ ,  $k_7$ , and  $k_9$  in Scheme 3 all equal to 300 ms<sup>-1</sup>,  $k_{TSE} \approx 180 \text{ ms}^{-1}$  (the inverse of the longest TSE time constant, 1/5.6 µs; Fig. 6 B), and we calculate using Eq. S7 that  $\kappa_{C \to O} = 0.66$ . With these assumptions regarding  $k_1$  and  $k_{TSE}$ , the mean number of exit attempts from C before achieving a full C $\rightarrow$ O crossing is ( $\kappa_{C \to O}/2$ )<sup>-1</sup> or ~3. The O $\rightarrow$ T<sub>4</sub> rate constant is slow with or without ACh, so the mean number of exit attempts from O before achieving a full O $\rightarrow$ C crossing is in both cases also ~3.



Figure S1. **Cyclic activation model.** C, closed-channel conformation; O, open-channel conformation; superscript A, agonist;  $K_d$ , low-affinity equilibrium dissociation constant;  $E_0$ , unliganded gating equilibrium constant;  $E_2$ , gating equilibrium constant with two bound agonists. Without external energy, the product of equilibrium constants connecting any two states is independent of the pathway (Hess's law). Considering C and  ${}^{2A}O$ :  $(1/K_d^2) \cdot (E_2) = (E_0) \cdot (1/J_d^2)$  or,  $E_2/E_0 = (K_d/J_d)^2$ .



Figure S2. Energy landscapes corresponding to Scheme 3 with  $k = 500 \text{ ms}^{-1}$ , except for the intermediate state(s) marked by an open circle (Table S3).  $\tau$  is the brief shut interval flip/primed lifetime measured after filtering and fitting by C-C'-O (Fig. 6 C). Lifetime (µs) of each TSE intermediate state is shown below each well.



Video 1. A model of AChR gating. Part 1 (~2 min): Description of the model detailing the structural components, energy landscape, sequence of rearrangements, and corresponding kinetic scheme. Part 2 (~3 min): Simulations of the model at three different time scales. (top left) Cartoon structure showing components that switch between locally off (black) and on (red) conformations; (top right) gating energy landscape; (bottom) simulated single-channel current. (i) 100 kHz (10 µs/sample). Only sojourns in C and O are clearly resolved. (ii) 2 MHz (500 ns/sample). Sojourns in the T states are also resolved. Notice that C $\rightarrow$ T structural transitions occur in long-duration shut intervals without a change in current and that brief closures in the current trace (flip/primed events) mainly reflect gate bubble formation. (iii) 50 MHz (20 ns/sample) using two different kinetic models (see Fig. S2).

#### Table S1. Backgrounds for MCA analysis

| Mutation(s)                 | Agonist    | Mutant pair                                                               |  |
|-----------------------------|------------|---------------------------------------------------------------------------|--|
| αA96V                       | 100 mM ACh | αS268P+αY190P                                                             |  |
| αC418W                      | 100 mM ACh | αS268A+αG147A, αP265A+αG147A, αP265A+αW149A, αI260P+αG147A, αI260P+αW149P |  |
| αC418Y                      | 100 mM ACh | αΡ265Α+αΥ198Α                                                             |  |
|                             | 100 mM Cho | αS268A+εP121A, αS268A+εP121S, αS268A+δP123A                               |  |
| αC418W+δI43Q                | 100 mM ACh | αP265G+αW149P                                                             |  |
| αC418Y+δI43Q                | 100 mM ACh | αI260P+αY190P                                                             |  |
| βT456F                      | 100 mM ACh | αΡ265Α+αΥ190F, αΙ260Ρ+δΡ123G,                                             |  |
| βT456F+δI43H                | 100 mM ACh | αΡ265Α+αΥ93Α, αΙ260Ρ+εΡ121G,                                              |  |
| βT456I+δI43H                | 100 mM ACh | αΡ265Α+γΡ112Α                                                             |  |
| βV229A+δI43Q                | 100 mM ACh | αS268P+εP121G, αP265G+εP121G                                              |  |
| δI43Q                       | 20 mM Cho  | αS269A+αT133A, αA270G+αT133A, αS266A+εK219A, αT267A+εK219A                |  |
| δΙ43Η                       | 100 mM ACh | αΕ262G+αY93A, αΕ262G +αW149A, αL263G+αY93A, αL263G+αW149A, αL263G+αY198A  |  |
| δI43Q+γL260Q                | 100 mM ACh | $\alpha P265A + \alpha G147A(\gamma)$                                     |  |
| εL269F                      | 100 mM ACh | αS268P+αW149P                                                             |  |
| αA96V+β V266A+dP123R        | 100 mM ACh | γΡ121Α+αΥ93Α                                                              |  |
| αA96V+ βL262S+δL265S+δP123R | No agonist | γP121A+αG147A                                                             |  |
| βL262S+δL265S+δP123R        | 100 mM ACh | γΡ121Α+αG147Α, γΡ121Α+αW149Α, γΡ121Α+αΥ190Α, γΡ121Α+αΥ198Α, γΡ121Α+γW55Α  |  |
|                             | No agonist | γP121A+αW149A, γP121A+αY198A                                              |  |
| δP123R                      | 100 mM ACh | γP121A+αG153A                                                             |  |

#### Table S2. Backgrounds for unliganded REFERs (Fig. 5)

| Mutation  | Background(s)                                 |  |  |
|-----------|-----------------------------------------------|--|--|
| αI260M    | $\alpha(D97A+Y127F+S269I+W149F)$              |  |  |
| S         | $\alpha(D97A+Y127F+S269I+W149F)+\delta V269C$ |  |  |
| А         | $\alpha$ (D97A+Y127F+S269I+W149F+C418W)       |  |  |
| αE262G; L | $\alpha(D97A+Y127F+S269I+W149F)$              |  |  |
| αP265K    | $\alpha$ (D97A+Y127F+S269I+W149F+C418W)       |  |  |
| G         | α(D97A+Y127F+S269I)                           |  |  |
| αS268E    | δI43Q                                         |  |  |
| D         | $\alpha$ (D97A+Y127F)                         |  |  |
| L         | $\alpha(D97A+Y127F)+\delta V269C$             |  |  |

## Table S3. Simulation results using Scheme 3 and different k values

| k                | $	au^{ m sim}$ | $	au^{ m flip}$ | k <sub>f</sub> | k <sub>b</sub>   |
|------------------|----------------|-----------------|----------------|------------------|
| ms <sup>-1</sup> | μs             | μs              | $ms^{-1}$      | ms <sup>-1</sup> |
| 100              | 15.8           | 15.2            | 35             | 30               |
| 200              | 8.4            | 9.3             | 51             | 55               |
| 300              | 5.6            | 6.4             | 61             | 82               |
| 400              | 4.3            | 5.8             | 61             | 107              |
| 500              | 3.5            | 5.0             | 58             | 137              |
| 600              | 2.9            | 4.6             | 49             | 161              |

 $\tau^{sim}$  is the slowest component of the simulated TSE shut distribution (Fig. 6 B),  $\tau^{flip}$  is the fitted shut component in facsimile patch experiments (Fig. 6 C),  $k_b$  and  $k_f$  are the fitted exit rate constants from C', backward and forward. In experiments with human adult AChRs expressed in cells,  $\tau^{flip} \sim 9 \mu$ s,  $k_f \sim 19 \text{ ms}^{-1}$ ,  $k_b \sim 86 \text{ ms}^{-1}$ .

| Table S4. | Effects of stabilizing | individual | <b>TSE</b> states |
|-----------|------------------------|------------|-------------------|
|           |                        |            |                   |

| n   | λ   | τ   | k <sub>f</sub>   | k <sub>b</sub> | $\Delta \mathbf{G}$ | $\mathbf{k}_{\mathrm{right}}$ |
|-----|-----|-----|------------------|----------------|---------------------|-------------------------------|
|     | μs  | μs  | ms <sup>-1</sup> | $ms^{-1}$      | kcal/mol            | $ms^{-1}$                     |
| 1   | 5.2 | 5.6 | 46               | 128            | 1                   | 55                            |
| 2   | 6.3 | 7.7 | 37               | 88             | 0.74                | 150                           |
| 3   | 6.1 | 7.3 | 53               | 80             | 0.5                 | 200                           |
| 4   | 5.9 | 7.0 | 79               | 62             | 0.7                 | 150                           |
| 1;4 | 5.3 | 6.7 | 45               | 99             | 0.54                | 200                           |

 $\lambda$ ,  $\tau$ ,  $k_{f}$ , and  $k_{b}$  as in Table S3.  $\Delta G$ , the free energy by which state(s) n was stabilized.  $k_{right}$ , forward exit rate constant from stabilized state(s). Corresponding energy landscapes are shown in Fig. S1.

# REFERENCES

Billing, G.D., and K.V. Mikkelsen. 1996. Introduction to Molecular Dynamics and Chemical Kinetics. John Wiley & Sons, Inc., New York. 200 pp. Chakrapani, S., and A. Auerbach. 2005. A speed limit for conformational change of an allosteric membrane protein. *Proc. Natl. Acad. Sci.* USA. 102:87–92. http://dx.doi.org/10.1073/pnas.0406777102

Qin, F., A. Auerbach, and F. Sachs. 1996. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. *Biophys. J.* 70:264–280. http://dx.doi.org/10.1016/S0006-3495(96)79568-1

Zhou, Y., J.E. Pearson, and A. Auerbach. 2005. Phi-value analysis of a linear, sequential reaction mechanism: theory and application to ion channel gating. *Biophys. J.* 89:3680–3685. http://dx.doi.org/10.1529/biophysj.105.067215