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1. Estimation of GLM

First, group all parameters into a single vector β = (φ, ξ, γ, σ), where φ = (φjk), and

ξ = (ξd(j)sk). Also, group each YiI (defined in Lemma 1) accordingly to form a “new” YiI .

Under the unified model, the conditional outcome parameter ψiI = πijskl in Lemma 1 is now

a function of β. The transition component and the prior marginal component remain the

same as in Lemma 1. The estimate for β is given by:

β̂ = argmax
β

∑
i

∑
I

YiI log(ψiI(β)).

Denote the design matrix by X. To illustrate how X can be constructed, we use the

following example with the number of items being J = 4, the number of states being S = 2,

the number of domains being D = 2, the number of predictor being p = 2, and the number

of response categories being Kj ≡ 2 for all items. We further assume that the first two items

are in the first domain and that the remaining two are in the second domain. The design

matrix X is given by:

1



X = (X1,X2, . . . ,XN)′,

Xi =



1 0 0 0 1 0 xi1 xi2 v1
0 1 0 0 1 0 xi1 xi2 v1
0 0 1 0 0 1 xi1 xi2 v1
0 0 0 1 0 1 xi1 xi2 v1
1 0 0 0 0 0 xi1 xi2 v1
0 1 0 0 0 0 xi1 xi2 v1
0 0 1 0 0 0 xi1 xi2 v1
0 0 0 1 0 0 xi1 xi2 v1
. . .
1 0 0 0 1 0 xi1 xi2 vq
0 1 0 0 1 0 xi1 xi2 vq
0 0 1 0 0 1 xi1 xi2 vq
0 0 0 1 0 1 xi1 xi2 vq
1 0 0 0 0 0 xi1 xi2 vq
0 1 0 0 0 0 xi1 xi2 vq
0 0 1 0 0 0 xi1 xi2 vq
0 0 0 1 0 0 xi1 xi2 vq



;

β = (φ11, . . . , φ41; ξdomain=1,s=1, ξdomain=2,s=1, γ1, γ2, σ)′, xi1, xi2 are the covariates of each
subject; and v1, . . . vq are the quadrature points of N(0, 1). This technique for estimating

random effects using Gauss-Hermite is discussed in Hinde (1982), and Fahrmeir and Tutz

(1994, Section 7.4). Note that the s index in ξd(j)sk stops at S − 1 to ensure the full column

rank of X.

The Fisher scoring iteration uses the following general updating equation,

β(n+1) = β(n) + (X ′W (β(n))X)−1s(β(n)),

where the weight matrix W (β) and the score function s(β) are respectively,

W (β) = D(β)V −1(β)D′(β), and s(β) = XDV −1(Y − µ(β)).

Here, D is the derivative of the inverse link function – i.e. D = ∂h−1(η)/∂η, where η = Xβ

is the linear predicator, µ(β) is the mean structure h−1(Xβ), Y = vec(YiI), and V is the

variance function. The specific forms of the derivative matrix D and the variance function

V for the unified model will be provided below.
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Matrices W , V , and D, all take a block diagonal form – i.e.,

W = diag(Wm),V = diag(Vm),D = diag(Dm),m = 1, . . . ,M,

and M = N × S × J × q. Each block of Wm is a (Kj − 1) × (Kj − 1) matrix, given by

DmV
−1
m D′m (Fahrmeir and Tutz 1994, pp. 39-40).

Using the cumulative logit link function (14), the inverse link h−1(.) is:

ζijs1l = h−11 (ηijs1l) =
eηijs1l

1 + eηijs1l

ζijskl = h−1k (ηijskl) =
e
∑k
k′=1 e

ηijsk′l

1 + e
∑k
k′=1 e

ηijsk′l
, k = 2, . . . , Kj − 1,

and thus Dm ∈ R(Kj−1)×(Kj−1) is given by:

(Dm)kk′ =

(
∂h−1k
∂ηijsk′l

)
=



ζijs1l(1− ζijs1l), k = k′ = 1,

eηijsklζijskl(1− ζijskl), k = k′ > 1,

eηijsk′lζijskl(1− ζijskl), k > k′,

0, k < k′.

The variance function V for the above mixed effect regression model on the conditional

probabilties of the HMM (Section 3.4.1 of Fahrmeir and Tutz 1994) is given by:

Vm =
1∑

t

∑
k

δ(yitj, k)α̃
(n)
itsl

[diag(πijsl)− πisjlπ′ijsl],

where πijsl = (πijskl) ∈ [0, 1]Kj−1.

Because the EM algorithm does not directly operate on the marginal likelihood, it does

not provide the observed information matrix necessary for computing standard errors. Sev-

eral methods have been proposed to calculate standard errors for the HMM. Lystig and

Hughes (2002) provide an overview and also propose an efficient method based upon a

foward-backward algorithm. We have implemented two methods for computing standard

errors. The first method was based upon the conditional expectation of the score function

of the complete data, which can be shown to equal to the score function of the observed

data (e.g., Meilijson 1989). Numerical differentiation was then used to compute the second

derivative of the expected score function. The second method, described in Meilijson (1989),
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was based upon the sum of the outer product of the individual contributions to the score

function. Both methods have led to similar standard error estimates for our application, and

here we only report results from using the second method (see also Friedl and Kauermann

2000).

2. Proof of Lemma 2.

Start from the Laplace approximation of the Bayes factor in (26) in the original article. Take

the logarithm of (26) and multiply by −2, the expression becomes a sum of four terms as

follows:

−2 log p(Y |H) = −d log(2π)− 2 log |Σ|1/2 − 2 log p(Y |β̂, H)− 2 log(f(β̂|H)), (1)

where the estimate of the parameter vector β̂ = (α̂1, τ̂ , π̂).

The third term, −2 log p(Y |β̂, H), is the deviance. The second term involves the likeli-

hood function, which can be used to directly derive |Σ|, the determinant of the covariance

matrix Σ = [−D2l(β̂)]−1. By the definition of l(β), we can separate it into two parts:

l(β̂) = log(p(Y |β̂, H)f(β̂|H)) = log(p(Y |β̂, H)) + log(f(β̂|H)),

where the first part is the log likelihood of observed data and the second part is the log

likelihood of estimated parameters.

We specify independent prior distributions for each set of parameters, α1s, τrs, and πsjk,

with the count parameter µ respectively highlighted using the superscripts (α), (τ), and (π),

respectively. Specifically, we have

fα(α11, . . . , α1,S−1;µ
(α)
1 , . . . , µ

(α)
S ) =

1

B(µ(α))

S∏
s=1

αµ
(α)
s −1

1s ,

fτ (τr1, . . . , τr,S−1;µ
(τ)
1 , . . . , µ

(τ)
S ) =

1

B(µ(τ))

S∏
s=1

τµ
(τ)
s −1

rs ,

fπ(πsj1, . . . , πsj,K−1;µ
(π)
1 , . . . , µ

(π)
K ) =

1

B(µ(π))

K∏
k=1

πµ
(π)
s −1
sjk , (2)

where B(.) is the beta function. The overall prior function is therefore
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f(β;µα,µτ ,µπ|H) = fα

S∏
r=1

fτ

S∏
s=1

J∏
j=1

fπ.

By choosing µ = 1 (Scott, James, and Sugar 2005) for each individual distribution

function, the RHS of (2) simplifies to 1/B(µ), and since the prior distribution is independent

of β, the second derivative of log(f(β̂|H)) would be zero. Thus we can cancel out the second

term in the RHS of (1) and equate Σ with Σ̃.

For the last term of (1), we use the definition of B:

B(µ(α)) = B(µ(τ)) =

∏S
i=1 Γ(µi)

Γ(
∑S

i=1 µi)
=

1

Γ(S)
and B(µ(π)) =

1

Γ(K)
.

It follows that the explicit form for the prior is

−2 log f(β|H) = 2(S + 1) log(Γ(S)) + 2SJ log Γ(K). (3)

Replace the last term on the RHS of (1) with the two terms on the RHS of (3), we complete

the proof.

3. Instructions on Using the Computer Codes

We provide the MATLAB codes and the subset of NLSY data in a zip file, which is

downloadable from the link: http://www.phs.wfubmc.edu/public/downloads/MHMM.zip.

The purpose of the Supplementary Materials section is to encourage open scientific eval-

uation and discussion, and we have no intention to use it as a means to distribute the

NLSY data set. Upon registration, the full NLSY data set is available at the website:

http://www.bls.gov/nls/. Also, to run the codes, the Bayesian Network Toolbox (BNT)

needs to be installed and can be downloaded at http://people.cs.ubc.ca/ murphyk/Software/BNT/bnt.html.

Once the zip file has been downloaded, follow the steps:

1. Unzip the zip file.

2. In MATLAB, set the path to the installed BNT directory.

3. Open ”runIt.m” in MATLAB.
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4. Change the two boolean variables, “doFixedEffect” and “doRandomEffect”, to the

specified model. Model I corresponds to both variables specified as 0, while the user

should specify “doFixedEffect” as 0 and “doRandomEffect” as 1 in Model II, “doFixed-

Effect” as 1 and “doRandomEffect” as 0 in Model III and both variables as 1 in Model

IV.

5. Run the matlab program and wait until the log likelihood converges. The computation

time might be in the order of hours for the mixed-effects model and the results might

slightly vary from the one published, given the different initial values. Multiple runs are

suggested by changing the value of variable ”R” and also experimenting with different

initial values of β is strongly encouraged.
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