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SUPPLEMENTARY MATERIAL

1. MCMC Details.

1.1. Quantile Parameters. All prior parameters are independent across
basis functions and predictors. Polynomial parameters are also independent.
That is, the intercept effect over time is independent of slope effect across
time. Let θ?dmp be the vector of length H = 2 corresponding to the regres-

sion coefficients for SBP and DBP for the dth polynomial term, mth basis
function and pth predictor. In our model θ?dmp

∼ N(µdmp, ι
2
dmp), where ι2dmp

is a precision. Below we suppress the subscripts for d, m, and p. We sample
from the posterior distribution for θ?dmp using random walk Metropolis, as
the posterior distribution does not have a closed form. In the burn in period
posterior variances are tuned to have a 30-40% acceptance ratio.

We assign µ a Gaussian prior with mean µ0 and precision ι20. Conditional
on the other parameters the posterior distribution of µ is of the form

[µ|rest] ∝ exp
{
−0.5ι2[θ? − 1µ]′[θ? − 1µ]

}
exp

{
−0.5(ι20)[µ− µ0]2

}
∝ exp

{
−0.5[µ2

(
ι21′1 + ι20

)
− 2µ

(
ι21′θ + ι20µ0

)
]
}

= exp
{
−0.5

[
µ′Ωµ− 2µ′ω

]}
= exp

{
−0.5

[
µ′Ωµ− 2µ′Ω(Ω−1ω)

]}

which is the kernel of a normal random variable with mean Ω−1ω and vari-
ance Ω−1 where Ω = Hι2 + ι20 and ω = ι21′θ + ι20µ0.
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We assign ι2 a gamma(a, b) prior. Let x = θ? − 1µ. Conditional on the
other parameters the posterior distribution of ι2 is of the form

[ι2|rest] ∝ ιH/2 exp
{
−0.5ι2x′x

}
(ι2)(a−1) exp

{
−ι2/b

}
∝ (ι2)(H/2+a−1) exp

{
−ι2

(
0.5x′x + 1/b

)}
= (ι2)(H/2+a−1) exp

{
−ι2

(
(0.5bx′x + 1)/b

)}

which is the kernel of a gamma random variable with shape H/2 + a and
scale (2b/(bx′x + 2)).

1.2. Copula Parameters. For MCMC we model Φ−1(Ui) = Wi = Di [Ziγi + ηi + Ei],
where ηi ∼ N(0,Ξ(α)⊗Λ). The regression coefficients γi have posterior

[γi|rest] ∝ exp
{
−0.5[W i −Di (Ziγi + ηi)]

′D−2i [W i −Di (Ziγi + ηi)]
}

exp
{
−0.5γ ′i∆

−1γi

}
∝ exp

{
−0.5γ ′i

(
Z ′iDiD

−1
i D

−1
i DiZi + ∆−1

)
γi + γiZ

′
iDiD

−2
i (W i −Diηi)

}
= exp

{
−0.5γ ′i

(
Z′iZi + ∆−1

)
γi + γiZ

′
i

(
D−1i Wi − ηi

)}
which is the kernel of a multivariate normal random variable with mean
Ω−1ω and variance Ω−1 where Ω = Z ′iZi+∆−1 and ω = Z ′i

(
D−1i Wi − ηi

)
.

The regression coefficients ηi have posterior

[ηi|rest] ∝ exp
{
−0.5[W i −Di (Ziγi + ηi)]

′D−2i [W i −Di (Ziγi + ηi)]
}

∗ exp
{
−0.5η′iΨ

−1ηi

}
∝ exp

{
−0.5η′i

(
DiD

−1
i D

−1
i Di + Ψ−1

)
ηi + η′iDiD

−2
i (W i −DiZiγi)

}
= exp

{
−0.5η′i

(
I + Ψ−1

)
ηi + η′i

(
D−1i W i −Ziγi

)}
which is the kernel of a multivariate normal random variable with mean
Ω−1ω and variance Ω−1 where Ω = I + Ψ−1 and ω = D−1i W i −Ziγi.

The elements of ∆ and Λ are singly updated using random walk Metropo-
lis. The correlation parameter α is sampled using independent Metropolis
updates.

2. Additional Simulation Results.
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Table 1
Coverage probability (CP) and mean squared error (MSE) for the N = 100 arm of the

simulation study. We compare treating the data as independent within a subject (“Ind”),
fitting with a copula (“Cop”), and the random effects model of [1] (“RBW”). Coverage
and MSE were evaluated at and averaged over the quantile levels {0.1, 0.3, 0.5, 0.7, 0.9}.

For datatype = 1, MSE values are less than depicted values by a factor of 10. Estimators
whose MSEs were statistically significantly different than the copula model are indicated

by ∗.

∆ = 0, Datatype = 1

Coverage MSE
α = 0.0 α = 0.5 α = 0.9 α = 0.0 α = 0.5 α = 0.9

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2
Ind 0.91 0.95 0.88 0.94 0.73 0.94 0.02 0.05 0.03 0.05 0.06 0.06
Cop 0.95 0.96 0.95 0.97 0.94 0.96 0.02 0.05 0.03 0.05 0.05 0.04

RBW 0.83 0.90 0.86 0.89 0.88 0.87 0.08∗ 0.13∗ 0.10∗ 0.12∗ 0.12∗ 0.11∗

∆ = 0, Datatype = 2

Coverage MSE
α = 0.0 α = 0.5 α = 0.9 α = 0.0 α = 0.5 α = 0.9

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2
Ind 0.94 0.97 0.89 0.94 0.76 0.95 0.03 0.06 0.04 0.06 0.09 0.06
Cop 0.98 0.98 0.95 0.98 0.93 0.97 0.03 0.06 0.04 0.06 0.08 0.06

RBW 0.96 0.98 0.95 0.96 0.93 0.95 0.03 0.06 0.04 0.06 0.09 0.06

∆ = 3, Datatype = 1

Coverage MSE
α = 0.0 α = 0.5 α = 0.9 α = 0.0 α = 0.5 α = 0.9

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2
Ind 0.61 0.76 0.58 0.78 0.56 0.72 0.08 0.09 0.08 0.09 0.09 0.10∗

Cop 0.92 0.91 0.91 0.90 0.89 0.91 0.08 0.07 0.07 0.07 0.07 0.06
RBW 0.85 0.70 0.85 0.69 0.86 0.67 0.14∗ 0.15∗ 0.15∗ 0.15∗ 0.16∗ 0.15∗

∆ = 3, Datatype = 2

Coverage MSE
α = 0.0 α = 0.5 α = 0.9 α = 0.0 α = 0.5 α = 0.9

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2
Ind 0.64 0.76 0.60 0.78 0.57 0.74 0.10∗ 0.12 0.11 0.13∗ 0.12∗ 0.13
Cop 0.90 0.90 0.89 0.89 0.91 0.92 0.07 0.08 0.07 0.08 0.07 0.09

RBW 0.86 0.80 0.84 0.79 0.83 0.77 0.09 0.10 0.11 0.10 0.13∗ 0.11
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