Supplemental Materials

The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2

Qin Wang^{1,2,6,7}, William D. Barshop^{3,7}, Mingdi Bian^{4,7}, Ajay A. Vashisht³, Reqing He², Xuhong Yu⁶, Bin Liu⁵, Paula Nguyen⁶, Xuanming Liu², Xiaoying Zhao^{2*}, James A. Wohlschlegel³, Chentao Lin^{6*}

1 Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China; 2 Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China; 3 Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA; 4 Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun 130062, China; 5 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, 6 Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA90095, USA.

7. Those authors contributed equally

*: Corresponding authors

Supplemental Table 1

Modified	Phosphopeptide	XCorr	ΔCn	Δppm	phosphoRS	Normalized
Residue(s)	Localization				Probability	Ratio
pS(598)	NLEGIQD <mark>S</mark> SDQITTSLGK	4.233	0.585	2.2	99.7433	2.2606
pS(599)	NLEGIQDS <mark>S</mark> DQITTSLGK	4.683	0.527	1.0	99.8314	3.3265
pS(605)	NLEGIQDSSDQITT <mark>S</mark> LGK	4.418	0.586	2.0	99.9999	3.3448
pS(598)/pS(605)	NLEGIQD <mark>S</mark> SDQITT <mark>S</mark> LGK	2.894	0.539	2.7	99.5195	17.0327

Table S1. Blue light-induced accumulation of the phosphopeptides of CRY2.

Sites of phsosphorylation are indicated by amino-acid residue position(s). All included peptides have an estimated spectrum-level false positive rate of less than 5% and a phosphosite localization probability of greater than 99% by the phosphoRS algorithm. Metrics of identification quality, XCorr, Δ Cn and Δ ppm were taken from the ProLuCID search outputs. Normalized peak ratios were calculated between blue light and dark conditions (see Methods).

Supplemental Table 2

	wт	cry1cry2	CRY2	4sA	6sA	8sA	10sA	13sA
Hypocotyl length (mm)	2.25±0.4	8.78±0.7	1.43±0.4	2.0±0.1**	3.3±0.5***	4.1±0.2***	6.18±0.5***	6.25±0.5***
Days to flower (d)	33.0±1.9	62.3±4.9	32.93±1.8	32.9±1.6	33.0±1.9	33.5±1.5	37.0±3.3**	37.1±3.2**
Leaf number	13.7±0.8	38.0±2	14±0.6	13.8±1.2	14±1.3	14.2±1.1	17.4±1.9***	16.5±1.6***
				4sD	6sD	8sD	10sD	13sD
Hypocotyl length (mm)				1.96±0.1**	1.93±0.4*	4.1±0.6***	5.43±0.5 ***	5.4±0.4***
Days to flower (d)				32.9±2.3	32.9±1.8	33.6±1.6	35.0±2.1*	35.2±2.3*
Leaf number				14.2±0.6	13.5±1.1	14.2±0.8	14.4±1.2	14.1±1.7

Table S2. A statistical analysis of the effects of serine substitution mutations in CRY2 on hypocotyl elongation in *Arabidopsis*

Results represent the mean \pm SD (n= 15 to 20), the p values of Turkey's LSD Test for the comparison between CRY2 and serine substitution mutations are shown.

Supplemental Figure 1

Fig. S1. A representative tandem mass spectrum of the NLEGIQD**p**SSDQITTSLGK peptide (pS598)

Fragments matched within 10ppm are annotated as either the B-ions (purple) or Y-ions (blue) series. The green dashed line indicates precursor m/z.

Supplemental Figure 2

Fig. S2. A representative tandem mass spectrum of the NLEGIQDSpSDQITTSLGK peptide (pS599)

Fragments matched within 10ppm are annotated as either the B-ions (purple) or Y-ions (blue) series.

Fig. S3. A representative tandem mass spectrum of the NLEGIQDSSDQITT**p**SLGK peptide (pS605)

Fragments matched within 10ppm are annotated as either the B-ions (purple) or Y-ions (blue) series..

Supplemental Figure 4

Fig. S4. Yeast two-hybrid assays showing that the serine-substitution mutations of CRY2 impaired its activity to interact with SPA1 and CIB1 in yeast cells.

(A) Histidine auxotrophy assay showing interaction between serine-substitution mutations of CRY2 and SPA1 or CIB1 in blue light (Blue, 25 μ mol m⁻² s⁻¹) or in the dark (Dark). The positive controls of the CRY2-SPA1 pair and the CRY2-CIB1 pair, and the negative control of pGADT7 (prey vector)-pBridge (bait vector) pair are included. (B) β -galactosidase activity liquid assay showing interaction between serine-substitution mutations of CRY2 and SPA1 and CIB1 in blue light (Blue, 75 μ mole m-2 s-1) or in the dark (Dark). Miller units were calculated to present the activity of β -galactosidase.