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Detailed Learning Rule and Parameters. The 100 excitatory synapses follow the

calcium-dependent plasticity rule,
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where wi is the weight of synapse i, i = 1, 2, …, 100. The learning curve Ω is a difference

of sigmoids,

( ) ( ) ( )2211 ,,[Ca]5.0,,[Ca][Ca] βασβασ iii ×−=Ω , (2)

with ( ) ( )( ) ( )( )[ ]axbaxbbax −+−= exp1/exp,,σ  and (α1, β1, α2, β2) = (0.25, 60, 0.4, 20). The

precise shape of Ω does not qualitatively affect the results of our simulations, as long as

the U-shaped dependence on calcium is maintained. The learning rate η depends linearly

on calcium, η ([Ca]i) = 2 × 10-5 [Ca]i, so potentiation occurs faster than depression. For

the sake of simulation times, we set η ([Ca]i) = 2 × 10-3 [Ca]i in the simulations showing

input selectivity. We have verified that the fixed point is not altered as long as the rate of

homeostasis is multiplied by the same factor. Finally, λ = 0.005 is the synaptic decay.

The local NMDAR-mediated calcium concentration follows a first-order linear

differential equation,
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where I is the N-methyl-D-aspartate (NMDAR) calcium current and τ = 20 ms is the

calcium passive decay time constant. I depends on the association between presynaptic

spike times and postsynaptic depolarization level as Ii = g fi(t)H(V), where f describes the

dynamics of the glutamate-receptor interaction, H describes the voltage-dependent



magnesium-block of the NMDAR, and g is the NMDAR conductance. Upon a prespike, f

reaches its peak value of one. 70% of this value decays with a fast time constant τf
N =

50ms and the remainder decays with a slower time constant  τs
N = 200 ms. H is given by 
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with reversal potential for calcium Vrev = 130 mV. The contribution of the local

depolarization to the H-function is negligible compared to the back-propagating action

potentials (BPAP), so here we use V = Vrest + BPAP(t).

Integrate-and-Fire Model. An integrate-and-fire model simulates the dynamics of the

somatic membrane potential
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where τm = 20 ms is the membrane time constant, Vex = 0, Vin  = 65 mV and Vrest is the

resting membrane potential. To simulate spike-frequency adaptation, Vrest is decreased by

2 mV upon a postsynaptic spike and decays back to the baseline value of -65 mV, with a

time constant of 100 ms. If a presynaptic spike arrives at the excitatory [inhibitory]

synapse i, Gex[in](t) = Gex[in](t)(t-1) + sigex[in]
max, otherwise, Gex and Gin decay exponentially

with a time constant τg = 5 ms. For excitatory synapses, (si, gex
max) = (wi, 0.03), while for

inhibitory synapses, (si, gin
max) = (1, 0.1). If Vm reaches the firing threshold of –55 mV, a

postsynaptic spike is generated and BPAP(t) is updated to its peak value of 42 mV. 75%

of this value decays rapidly (τf
B = 3ms) and the remainder decays slowly (τs

B = 35 ms).

Implementation of Stabilization. The biophysical model of stabilization can be

implemented through a kinetic model for insertion and removal of NMDARs:
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where g is the amount of NMDARs at the synapses, gu is the amount of unused

NMDARs from the internal pool, k-(V-Vrest)α and k+ are the kinetic constants of removal

and insertion, respectively. As before, V = Vrest + BPAP(t). If the number of receptors is

proportional to their effective conductance, we can write the dynamic equation for the

NMDAR conductance,
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with the normalization factor gt = g + gu, gt = 4.5 × 10-3 µM/(µV.ms), k- = 8 × 10-9 ms-1

and k+ = 8 × 10-7 ms-1, except for the input selectivity simulations for which k- = 8 × 10-7

ms-1, k+ = 8 × 10-5 ms-1 (see above). The results are not sensitive to the detailed functional

form of the voltage-dependent transition rate.
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