Supporting Text

Detailed Learning Rule and Parameters. The 100 excitatory synapses follow the

calcium-dependent plasticity rule,
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where w; is the weight of synapse 7, i =1, 2, ..., 100. The learning curve Q is a difference
of sigmoids,

QCal;) = o([Cal;, @1, fy) - 0.5x o([Cal;, @3, B, ) 2)

with o(x,a,b)= exp(b(x — a))/[1 + exp(b(x — «))] and (e, i, o, () = (0.25, 60, 0.4, 20). The
precise shape of Q does not qualitatively affect the results of our simulations, as long as
the U-shaped dependence on calcium is maintained. The learning rate | depends linearly
on calcium, 1 ([Ca];) = 2 x 107 [Ca];, so potentiation occurs faster than depression. For
the sake of simulation times, we set | ([Ca];) =2 x 10~ [Ca]; in the simulations showing
input selectivity. We have verified that the fixed point is not altered as long as the rate of

homeostasis is multiplied by the same factor. Finally, A = 0.005 is the synaptic decay.

The local NMDAR-mediated calcium concentration follows a first-order linear

differential equation,
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where [ is the N-methyl-D-aspartate (NMDAR) calcium current and t = 20 ms is the
calcium passive decay time constant. / depends on the association between presynaptic
spike times and postsynaptic depolarization level as I; = g f(#)H(V), where f describes the

dynamics of the glutamate-receptor interaction, H describes the voltage-dependent



magnesium-block of the NMDAR, and g is the NMDAR conductance. Upon a prespike, f
reaches its peak value of one. 70% of this value decays with a fast time constant 7/ =

50ms and the remainder decays with a slower time constant t," = 200 ms. H is given by
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with reversal potential for calcium V., = 130 mV. The contribution of the local
depolarization to the H-function is negligible compared to the back-propagating action

potentials (BPAP), so here we use V' = Vs + BPAP(?).

Integrate-and-Fire Model. An integrate-and-fire model simulates the dynamics of the

somatic membrane potential
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where 7, = 20 ms is the membrane time constant, V.. =0, Vi, =65 mV and Ve is the
resting membrane potential. To simulate spike-frequency adaptation, Vi is decreased by
2 mV upon a postsynaptic spike and decays back to the baseline value of -65 mV, with a
time constant of 100 ms. If a presynaptic spike arrives at the excitatory [inhibitory]
synapse i, Gexin)(t) = Gexin)()(#-1) + SiZexgin] " Otherwise, G, and G;, decay exponentially
with a time constant 1, = 5 ms. For excitatory synapses, (si, gex' ) = (W, 0.03), while for
inhibitory synapses, (s;, gin ) = (1, 0.1). If V,, reaches the firing threshold of =55 mV, a
postsynaptic spike is generated and BPAP(¢) is updated to its peak value of 42 mV. 75%

of this value decays rapidly (TfB = 3ms) and the remainder decays slowly (t,” = 35 ms).

Implementation of Stabilization. The biophysical model of stabilization can be

implemented through a kinetic model for insertion and removal of NMDARSs:



g g, (6)

where g is the amount of NMDARs at the synapses, g, is the amount of unused
NMDARs from the internal pool, k.(V-V;e)® and k- are the kinetic constants of removal
and insertion, respectively. As before, V' = Vit + BPAP(?). If the number of receptors is
proportional to their effective conductance, we can write the dynamic equation for the

NMDAR conductance,
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with the normalization factor g, = g + g,, g = 4.5 x 10” pM/(uV.ms), k.= 8 x 10° ms™
and k=8 x 107 ms™', except for the input selectivity simulations for which k.= 8 x 107
ms™, k: =8 x 10° ms™ (see above). The results are not sensitive to the detailed functional

form of the voltage-dependent transition rate.
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