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1. Cu-Zr Binary Phase diagrams 

There are three major Cu-Zr binary phase diagrams reported to date. Phase formation 

mechanisms in Cu-rich sections (>90 at.%) in phase diagrams are still under debate. 

Different thermal treatments produce Cu5Zr, Cu51Zr14, and Cu9Zr in this composition 

region. The crystal structure of Cu5Zr features Cu and Zr alternating layers, which 

produces the superlattice diffraction pattern in Figure 1 of the manuscript. However, 

rapid solidification produces chemical inhomogeneity and internal strain, making analysis 

of the diffraction data very difficult.  

 

 

(1) Ref. 20 of the manuscript: Cu5Zr is stable phase at room temperature. 

 

Figure S1. Cu-Zr phase diagram. 

 

 



 (2) Ref. 21 of the manuscript: Cu9Zr2 is the stable phase at room temperature. 

 

Figure S2. Cu-Zr phase diagram. 

(3) Ref. 22 of the manuscript: Cu51Zr14 is the stable phase, and Cu5Zr is the metastable 

phase at room temperature. 

 

Figure S3. Cu-Zr phase diagram. 



2. X-ray diffraction data and additional TEM analysis. 
We performed X-ray diffraction (XRD) analysis for Cu-Zr-Al and Cu-Zr-Ti 

systems as well as TEM analysis on Cu-Zr-Ti system. For Cu-Zr-Ti system, XRD results 

showed Cu, Cu5Zr, and Cu4Ti phases (Figure S4(a)). Note that Cu4Ti was not shown in 

our previous manuscript. In order to confirm the existence of Cu4Ti phase, we performed 

additional TEM analysis. The bright field image and diffraction pattern with the [1 0 -1] 

zone axis confirms that Cu4Ti phase indeed exists. The composition map in HAADF 

image also confirms that Cu4Ti phase does not include Zr (Figure S5). However, we 

noticed that the volume fraction of Cu4Ti is much smaller than that of Cu and Cu5Zr. For 

Cu-Zr-Al system, XRD results show Cu, Cu5Zr, and nanocrystalline phases (Figure 

S4(b)). These results are consistent with our TEM results in Figure 1. Also, there is a 

peak that the database could not index. As discussed in the first paragraph of Results 

section (page 4 of the manuscript), the phase formation mechanism in Cu-Zr binary 

system is still under debate, and several different phases seem to be formed within the 

narrow range of composition. Also, rapid solidification process often causes severe lattice 

distortion. Thus, minor peaks would be associated with unknown phases and severe 

lattice distortion, so it is difficult to index them. In conclusion, Cu and Cu5Zr phases 

occupy the major volume fraction of Cu-based MINCs although there are minor phases 

such as nanocrystalline phase in Cu-Zr-Al system and Cu4Ti phase in Cu-Zr-Ti system. 

Thus, Cu and Cu5Zr phases would primarily control mechanical properties of our MINCs. 

 

    

Figure S4. X-ray diffraction data of (a) Cu85Zr10Ti5 and (b) Cu85Zr10Al5. 



 
 
Figure S5. (a) The TEM bright field image of Cu4Ti and Cu5Zr phases in Cu85Zr10Ti5 and 
HAADF composition map of (b) Cu, (c) Zr, and (d) Ti at the area of broken line box in 
Figure S4(a). 

 



3. High angular annular dark field (HADDF) analysis 

Ti has good solid solubility in Cu at an elevated temperature (7.5 at.% at 900 oC), 

but negligible solubility at room temperature. By rapidly solidifying our alloy, the 

diffusion of Ti atoms from Cu grains, which would typically occur with conservative 

cooling, is halted, creating a non-equilibrium Cu phase which is supersaturated with Ti. 

Figure S6 shows that Ti atoms exist only in Cu grains. We were not able to find any Cu-

Ti intermetallic compounds from both HADDF analysis and diffraction patterns. Thus, Ti 

atoms would exist as a solute atom in Cu grains. 

 

 

Figure S6. HADDF composition map of Cu, Ti and Zr in Cu85Zr10Ti5 alloy. All Ti atoms 

exist only in Cu phase. Diffraction pattern does not show any Cu-Ti intermetallic 

compounds, which indicate that Cu and Ti forms supersaturated solid solution. 

 



4. Reference information of Figure 2(b)  

 

Figure S7. Plastic strain vs. compressive failure strength of Cu-based bulk metallic 

glassses (BMGs), Cu-based bulk metallic glass composites (BMGCs), and Cu-based 

metal-intermetallic nanostructured composites in this study. Note that we included Cu-

based materials that have Cu as a major element (the largest atomic percent) to consider 

Cu alloys only.  

 

The list of references is given below. The reference number below corresponds to the 

number in Figure S5.  
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5. Strong chemical resistance and large volume fraction of Cu-Zr 

intermetallic compound 

After short exposure to a concentrated solution of Nital etchant (50% nitric acid, 

50% methanol), preferential and complete chemical attack on the Cu phase (with Ti 

solutes) is observed. The persistence of the Cu-Zr intermetallic phase illustrates the 

resistance of this phase to chemical dissolution. Additionally, the distribution of the Cu-

Zr intermetallic phase is highlighted in the absence of the Cu phase, illustrating its large 

volume fraction in our material. From TEM image analysis, the volume fraction of 

intermetallic phase is nearly 60 % (Note: The volume fraction measurement cannot be 

done with Figure S8 because Cu-Zr intermetallic phases are stacked up after removing 

Cu phases.). 

 

Figure S8. Scanning electron microscope image of Cu85Zr10Ti5 after short exposure to a 

concentrated solution of Nital etchant (50% nitric acid, 50% methanol). 

 

 



6. Theoretical shear strength of Cu5Zr and Cu 

First-principles density functional theory calculations are carried out using Vienna 

ab initio simulation package (VASP) to obtain the theoretical strength in the most 

favorable slip systems in Cu5Zr phase [1, 2], with the electronic-ion interaction described 

by a projector augmented wave method [3, 4] and a Perdew-Burke-Ernzerhof form 

generalized gradient approximation (GGA) [5] for the exchange-correlation potential. A 

plane wave basis sets wave function is expanded with a cutoff energy of 400eV. Brillouin 

zone integration was performed using a Monkhorst-Pack scheme [6], with a k-point mesh 

of 4x4x1 for {001} slip systems (6.89x6.89x23.78 Å3) and 6x3x1 for {111} slip systems 

(4.87x8.44x25.91 Å3). The crystal structure of Cu5Zr phase is shown in Figure S9. 

Density functional theory (DFT) calculations were carried out to determine and 

compare the resistance to plastic slip in Cu5Zr and Cu phase. The generalized stacking 

fault (GSF) energies were calculated for various slip planes and directions (Figure S10). 

We carefully made the list of the potential slip planes based on the interplanar spacing. 

Typically, the large interplanar spacing enables the easy slip process. We found that the 

minimum energy barrier for slip in Cu5Zr (~1000 mJ/m2) is much higher than that in Cu 

(~250 mJ/m2), which suggests a significantly high slip resistance as well as high strength 

in the Cu5Zr intermetallic compound phase. Also, GSF curves show that the theoretical 

shear strength of Cu5Zr is close to 8 GPa, but that of Cu is ~3 GPa. Therefore, Cu5Zr is 

much stronger than Cu, and the large volume fraction (~60 %) of intermetallic phase 

would make the major contribution to the high strength of our MINCs. 

 

Figure S9. Unit cell of Cu5Zr intermetallic compound phase (Space group: F-43m, a = 

0.687 nm) 



 

Figure S10. (a) Two (0 0 1)/[1 -1 0] slip systems and (b) one (1 1 1)/[1 -1 0] slip system 

of Cu5Zr IM phase. These slip systems are chosen based on the largest interplanar 

spacing, which is the pre-requisite of preferred slip process. (c) Generalized stacking fault 

energy curves of Cu5Zr and Cu phases. 
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7. The effects of cooling rate on ductility of Cu85Zr10Ti5 

Cylindrical specimens having diameters of 1.5, 2 and 3mm were tested in 

compression to illustrate the effects of cooling rate on the ductility. Additionally, 

2x2x4mm rectangular specimens were machined from the bulk pre-alloying ingot and 

compressed. Obviously, the bulk ingot undergoes solidification at the slowest cooling 

rate and the 1.5mm diameter casting is solidified at the highest rate observed in this work.  

A simultaneous increase in ductility and strength is observed as specimens of similar 

composition, Cu85Zr10Ti5, are solidified with an increasing rate of cooling (Table 1 and 

Figure S11).  

Based on the observation in Figure 3, ductility in Cu-based MINCs is not due to 

conventional dislocation-based plastic deformation mechanisms. Rather, it is the result of 

shear displacement at phase boundaries between metallic and intermetallic phases. In 

D~1.5 mm specimen, the ultra-fine microstructure of our rapidly cooled specimens would 

provide an optimum morphology and connectivity of phase boundaries. The elongated 

shape of the intermetallic phases, which are oriented 45 degrees from the loading 

direction, serves as a smooth sliding surface which allows for shear-driven phase 

boundary sliding to occur easily and accounts for the extensive compressive plasticity 

(~20%) observed. Intermetallic phases, which are not oriented along 45 degrees, would 

effectively obstruct the continuous propagation of shear deformation, preventing 

catastrophic brittle fracture from occurring. However, D~3 mm or ingot specimen 

contains coarser intermetallic compounds and more rough connectivity of phase 

boundary, leading to the formation of large cracks in intermetallic compounds and 

preventing effective phase boundary sliding, respectively. Figure S12 shows the 

formation of large cracks in coarse intermetallic compounds, which are not observed in 

D~1.5 mm specimen. These large cracks would propagate through a specimen, leading to 

early fracture.  

 

 

 



 

 

Figure S11: Stress-strain plot illustrating the cooling rate effect upon ductility for MINC 

having composition of Cu85Zr10Ti5. Ductility in Cu based MINCs has a strong cooling 

rate effect. 

 

  

Figure S12. The development of large cracks in D~3mm Cu85Zr10Ti5 specimen after 

compression test. 

	
  

	
  


