

Supplement Figure S1. Assessment of Sendai viral genome contents in iPSCs. Sendai viral genome sequence (SeV) was expressed in S135F-iPSCs at cellular passages of 2 (P2) but SeV was not detected in S135F-iPSCs and P182L-iPSCs at cellular passages of 10 (P10). Primer sequences were 5'-GGA TCA CTA GGT GAT ATC GAG C-3' (forward) and 5'-ACC AGA CAA GAG TTT AAG AGA TAT GTA TC-3' (reverse) for SeV.

Supplement Figure S2. WA09-MNs, S135F-MNs and P182L-MNs formed
neuromuscular junctions by co-culturing with myotube cells differentiated from
C2C12 mice myoblast cells. Neuromuscular junctions were visualized by expression
of acetylcholine receptors on myotube cells and staining with Alexa 488-conjugated
α-BTX (DIC, differential interference contrast image; original magnification, 400x).

Absolute velocity (µm/sec)

В

Moving mitochondria (%)

Supplement Figure S3 (Continued)

Supplement Figure S3. Axonal transport in S135F-MNs and P182L-MNs from two different iPSC clones. (**A**) Mitochondrial velocity in hFSiPS1-MNs (N=513), S135F-MNs_clone 1 (N=383), S135F-MNs_clone 2 (N=45), P182L-MNs_clone 1 (N=344) and P182L-MNs_clone 2 (N=152). (**B**) Moving mitochondria (%) in hFSiPS1-MNs (N=6), S135F-MNs_clone 1 (N=13), S135F-MNs_clone 2 (N=7), P182L-MNs_clone 1 (N=21), and P182L-MNs_clone 2 (N=21). Unpaired t-tests, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. ns, not significant.

P182L-MNs

Supplement Figure S4 (Continued)

Supplement Figure S4. Immunostaining showed that treatment of HDAC6 inhibitors increased acetylated α-tubulin levels in S135F-MNs and P182L-MNs. (**A**) Acetylation of α-tubulin was visualized by immunostaining with anti-acetylated α-tubulin Abs (red). Total α-tubulin was also detected by staining with anti-α-tubulin Abs (green). (Original magnification, 400 ×). Scale bars: 100 µm. (**B**) The extent of acetylated αtubulin was normalized with corresponding total α-tubulin using ImageJ software. Number of fields for image analysis were: S135F-MNs + DMSO (N=4), S135F-MNs + Tubastatin A (N=5), S135F-MNs + X4 (N=3), S135F-MNs + X9 (N=10), P182L-MNs + DMSO (N=5), P182L-MNs + Tubastatin A (N=4), P182L + X4 (N=4) and P182L-MNs + X9 (N=4). Unpaired t-tests, *P<0.05, **P<0.01 and ***P<0.001.

Supplements

	DMSO	Tubastain A	X4		Х9	
	0.01 %	5 μΜ	0.5 μΜ	5 μΜ	0.5 μΜ	5 μΜ
WA09-MNs	0.24 ± 0.01	0.26 ± 0.01	0.25 ± 0.01	0.33 ± 0.01	0.30 ± 0.01	0.30 ± 0.02
hFSiPS1-MNs	0.25 ± 0.01	-	-	-	-	-
S135F-MNs	0.19 ± 0.01	0.25 ± 0.02	0.48 ± 0.06	0.38 ± 0.03	0.25 ± 0.02	0.39 ± 0.02
P182L-MNs	0.22 ± 0.01	0.27 ± 0.02	0.28 ± 0.04	0.33 ± 0.02	0.23 ± 0.01	0.29 ± 0.01

Supplement Table S1. Absolute velocity (μ m/sec) of moving mitochondria

Kim *et al.*

Supplements

	DMSO	Tubastain A	X4		X9	
	0.01 %	5 μΜ	0.5 μΜ	5 μΜ	0.5 μΜ	5 μΜ
WA09-MNs	31.39 ±	49.71 ± 6.18	35.63 ± 6.28	49.74 ±	38.31 ±	34.07 ± 8.86
	3.74			4.72	6.02	
hFSiPS1-MNs	68.64 ±	-	-	-	-	-
	6.42					
S135F-MNs	26.37 ±	21.73 ± 6.53	58.40±10.42	48.31 ±	55.33 ±	62.88 ± 5.73
	5.01			5.25	5.86	
P182L-MNs	14.19 ±	30.91 ± 5.78	70.83 ± 4.17	37.59 ±	45.07 ±	33.14 ± 2.91
	2.14			3.86	4.48	

Supplement Table S2. Percentage of moving mitochondria (%)

Supplements

Supplement Materials and Methods

Neuromuscular junction formation

C2C12 mouse myoblast cells (CRL-1772, American Type Culture Collection (ATCC), Manassas, VA, USA) were cultured in DMEM supplemented with 10% FBS and 1 mM glutamine and penicillin/streptomycin. At a cell confluence of 70%, 1% insulin-transferrin-selenium supplement (Sigma) was added to the medium for myotube differentiation. After 2 days, 10 μ M cytosine arabinoside (Sigma) was added to DMEM containing 0.5% FBS to remove dividing cells. After 2-4 days, differentiated myotubes were trypsinized and plated at a low density of 1 × 10⁴ cells/well onto Matrigel-coated 8-well slide chambers (Nalgene/NUNC). After 1-2 days, CMT2F-MNs and ESC-MNs were co-cultured with myotubes at a ratio of 10:1 and supplemented with MN differentiation medium. After 1 week, functional neuromuscular junctions were visualized by staining MNs with Alexa 488-conjugated α -bungarotoxin (Invitrogen).