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Supplementary 1: Models and Simulations 

Demographic sub-model  

In the SAI model, the demographic sub-model was divided into 99 age classes comprising 24 

monthly age classes in the first two years of life and yearly age classes from the third year of 

life to age 75 years. The final age class is composed of individuals older than 75 years. The 

BWI model had only 15 age classes consisting of 12 monthly age classes in the first year of 

life, 2-5 year olds, 6-10 year olds and the final one composed of individuals aged 10 – 75 

years old. The selection of monthly age classes in the youngest individuals is chosen so as to 

capture the transmission dynamics and the impact of vaccination in age groups who are the 

most at risk of RSV-related disease. Realistic population structure projections are obtained by 

use of age-specific mortality and fertility rates from KHDSS [1]. However, these rates are 

fixed in the model at the 2007 schedules, since to incorporate year on year changes would 

make it difficult to tell whether features projected by the model with vaccination are a result 

of demographic, epidemiological or vaccination patterns. The number of people in each age 

class is allowed to vary as a result of a continuous ageing process from a younger to an older 

age group and through natural deaths. The rate of ageing is taken to be the reciprocal of the 

length of the source age class. Assuming that an age class i can be represented as [ai, ai+1], 

then the rate of ageing from age class i to i + 1 is thus as 
ii aa 1

1
.   

Seasonal forcing 

In the absence of a definitive knowledge of the drivers of RSV seasonal patterns, seasonality 

is modelled using a simple cosinusoidal function. The age-specific force of infection is 

expressed as:  
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where βi,j represents the WAIFW matrix (the transmission coefficient between susceptible of 

age class i and infected of age class j), Nj(t) is the total number of infected individuals in age 

class j at time t, αk,j is the relative infectiousness of infected individuals in different infected 

classes k (k = 0,1 and 2 in SAI model and k = asymptomatic (A), upper respiratory tract 

infection (URTI), lower respiratory tract infection (LRTI), severe lower respiratory tract 

infection (SLRTI) and hospitalization (H) in BWI model – see below and the supplementary 

Materials). The seasonal parameters defining the relative amplitude, a, and the timing of the 

peak in transmission, φ, are unknown and are determined by fitting the model to 

hospitalization data (see detail in Model fitting and simulation). 

Disease stages and severity  

The distribution of disease in those infected was assumed to be dependent upon the prior 

immune status. The distribution follows the decision tree shown in Figure 1, such that disease 

of increasing severity is always a subset of the preceding disease severity group. Based on a 

longitudinal cohort study of RSV infection in Kilifi, Kenya [2], the age-specific risk of a 

specific disease state for each individual following infection is estimated by fitting the static 

models to the data set. The initial vector used for the fitting process was derived from 

longitudinal data of RSV infections [3]. Here, static model refers to the equilibrium state with 

force of infection that is age-specific but constant in time. Once estimated from the static 

model, the risk of hospitalization remains fixed for fitting the dynamic models. 
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Figure 1.1S. Decision tree for distribution of disease states following infection. Solid lines 

represent the nested compartments within each other sequentially and the dashed line 

represents a proportion of severe LRTI who are hospitalized.  

Two independent epidemiological sub-models 

a) Sequential acquisition of immunity model (SAI) 

This model is based on the epidemiological premise that following primary, secondary and 

subsequent infections the individual progressively develops an immunity state (with altered 

susceptibility to, and infectivity on, reinfection), which does not wane. The overall 

compartmental structure is defined in the Figure 1A in the main text and is described by 

Kinyanjui et. al. 2015 [4]. 

The host population is stratified into ten epidemiological groups: those who are maternally 

protected (M), primary susceptible (S0), primary infected (I0), primary recovered (P0), 

secondary susceptible (S1), secondary infected (I1), secondary recovered (P1), tertiary 

susceptible (S2), tertiary infected (I2) and tertiary recovered (P2). Disease arising from 

infection is defined as D and hospitalization is defined as H. The incidence of disease (D) is 

related to age and episode while hospitalization (H) is related to age. All the state variables 

(i.e. the rectangle compartments in Figure 1.1S) are stratified by both age and time such that 

S0,a(t) represents the density of the primary susceptible of age a at time t and so forth. The 

rates, with respect to both time and age, at which individuals flow from one epidemiological 
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state to another are described by a system of ordinary differential equations shown below, 

where κ is the rate of ageing, Θ is the age-specific fertility rate, γ0, γ1 and γ2 are the recovery 

rates from primary, secondary and tertiary infections respectively, ω is the rate of loss of 

maternal antibody protection, ρ1 and ρ2 are the rates of loss of secondary and tertiary 

immunity respectively, λa is the age-specific force of infection, Na is the total number of 

people in age class a and µa is the age-specific mortality rate. 

SAI model equations are as follow: 
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b) Boosting and waning of immunity model (BWI) 

The BWI model has its origins in a simple non-age-structured model of RSV group A and B 

dynamics [5], but is essentially developed de novo as an age-stratified model for the purpose 

of evaluating the potential impact of vaccination. In the BWI model the host population is 

stratified into seven epidemiological compartments shown in Figure 1B in the main text:  

maternally protected (M), primary susceptible (S0), infected but asymptomatic (A), infected 

and symptomatic categorized as upper respiratory tract infections (URTI), lower respiratory 

tract infections (LRTI), severe lower respiratory tract infections (SLRTI), or hospitalized (H), 

and, finally, secondary susceptible (S1), that is, those still susceptible to infection, but who 

have partial immunity. The proportions of individuals entering each class upon infection are 

dependent on both age and immune status. The diagram shows the flow of individuals 

through the epidemiological compartments. The infection classes i.e. SLRTI, LRTI, URTI, 

and A are nested within each other sequentially (see Figure1 and decision state section 

above.) This excludes H which is not a separate infection class but a proportion of the SLRTI 

class. Similar to the SAI model, the model includes age-dependent processes, such as the 

force of infection and age-specific parameters. Thus all the state variables are stratified by 

both age and time such that S0,i(t) represents the density of the primary susceptible of age i at 

time t and so forth. The rates, with respect to both time and age, at which individuals flow 

from one epidemiological state to another are described a system of ordinary differential 

equations.  

BWI model equations are as follow: 
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and  𝑁 = 𝑀 + 𝑆0 + 𝐼𝐴 + 𝐼𝑈+𝐼𝐿 + 𝐼𝑆𝐿 + 𝑆1𝐴 

 

There are two main differences between the structure of the BWI model and the structure of 

the SAI model:  First, there is an absence of any fully resistant to infection state for the BWI 

model (compare with the short lived fully immune classes P0, P1, and P2 in the SAI model). 

Instead, individuals move directly into the secondary susceptible class S1 after their infection. 

In this class, people are less likely to get infected and if they are infected, they are less likely 

to get severe infection. Second, in the BWI model, immunity can wane and secondary 

susceptible individuals in S1 could return to completely naïve susceptible (S0) i.e. if an 

individual remains unchallenged for a certain length of time, they can return to S0. For 

simplicity, tertiary and subsequent infections were all classified as being secondary infections 

in the BWI model.  

Note that in both the SAI and BWI model RSV related deaths are assumed sufficiently few 

not to impact on population and infection dynamics, i.e. negligible for the modelling purpose, 

and hence they are not explicitly represented in the model equations. 
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Model fitting and simulation 

Both models were implemented as ordinary differential equations (ODEs) and solved 

numerically (for SAI model, an explicit Runge-Kutta method of order (4,5) with an adaptive 

time step was used in Matlab1 [6], for BWI model the “deSolve” package of R v3.2.1 with 

“lsoda” solver was used [7]). The two models were calibrated using the same set of age- 

and time-specific hospitalization data obtained from long-term surveillance of pneumonia 

admissions to Kilifi County Hospital, coastal Kenya [8]. The model was fitted using 

statistical maximum-likelihood estimation assuming that the age and time counts follow a 

Poisson distribution. We optimized the model parameters by maximizing the log-likelihood 

as 

∑ {∑(𝑘(𝑎, 𝑡) log 𝐻(𝑎, 𝑡) − 𝐻(𝑎, 𝑡) − ∑ log (𝑗))
𝑘(𝑎,𝑡)

𝑗=1

𝑇𝑎

𝑡=1

}

𝑛

𝑎=1

 

where k(a,t) is the expected incidence of hospitalizations at age a and time t, Ta is the number 

of time points at which the expected incidence data are made for each age a and H(a,t) is the 

corresponding expected incidences from the model at each age class a and time t. n is the 

number of age classes used in each model.  

To ensure that the impacts of each vaccine TPP would not be influenced by transient 

population and infection dynamics, the initial conditions for the state variables for each age 

class were taken to be the pre-vaccination numbers obtained by running the model for a 

period of 100 years to its stable limit cycle. Model projections with vaccination were over a 

ten year time horizon and stratified into age group (infants aged under one year and 

individuals less than five years of age), for (a) a baseline epidemiological and TPP parameter 

set, and (b) a wide range of TPP sets forming the main sensitivity analysis. 
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Sensitivity analyses 

We approach the sensitivity analysis in two stages, one-way and multi-way analyses.  

Stage 1: A one-way sensitivity analysis cycling through the vaccine TPP parameters 

and varying each parameter sequentially through each option defined above while 

keeping the others at baseline. This leads to 26 simulations and the results are 

described and discussed here. This analysis was done twice, one for infant and the 

other for maternal vaccination regimens. 

Stage 2: A multi-way sensitivity analysis on the 6 vaccine effect parameters defined 

in Table 1 of the main text (every combination of 3 values for each of the 6 effect 

parameters i.e. 36 = 729 combinations), combined with a one-way sensitivity analysis 

of all the other parameters (i.e. a process as for stage 1 including all the vaccine 

implementing strategies, waning and possible interactions with immunities) with an 

attempt to identify the key vaccine characteristics that correlate with the level of 

vaccine impact on the key outcome, i.e. severe disease in infancy (specifically 

hospitalizations due to RSV in the first 12 months of life). This will be 729×13=9477 

simulations. This process is undertaken only for infant vaccination. 
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