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Measurement of the cell radius using the AFM data collected in the force-volume mode 

The radius of the cell Rcell used in this work has been measured from the AFM topographical 

image of the cell obtained in the force-volume mode, and corrected by the cell deformation i (the 



 

latter was calculated using eq. (1) of the main text). The below is an example describing how to 

extract this from the force volume data collected with AFM. 

 

Figure S1a shows a representative height image collected in the force volume mode. Because we 

don’t want to disturb cells for excessively long time, only 16 x 16 pixels maps are collected. 

However, as one can see, it is quite enough to obtain the cell radius. It is worth noting that the 

same information has to be used to identify the force curves which will be processed for the data 

analysis. It should be noted that because we use the Hertz model, we can only use the pixels 

around the top (see the main text for more details).  

 

To calculate the radius of the cell, we have to correct the height data for their deformation. This 

is important because the cell is soft and deformation can be substantial. This can easily be done 

by increasing the height at each pixel by the amount of deformation calculated with the help of 

equation 1 of the main text. The result of such correction is shown in figure S1b. Figure S1c 

shows the cross-section of the undeformed cell of figure S1b. The radius of the cell was 

calculated by parabolic fitting (done with the help of SPIP software by Image Metrology Inc.). It 

is 5.8 µm in this specific example. 
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Measurement of biophysical parameters of cells around its top area 

The model described in this work was developed for two spheres deforming along the line 

connecting their centers. Therefore, we consider only the force curves from the top area of cells. 

Specifically, we take the force curves in the surface points around the top when the incline of the 

surface is <10-15 degrees). To identify such curves, the cell height image was used, and the 

radius of the cell was derived as described in the previous section.  

A particular example of data processing of cell #7 of low density ALL3 cells done in the way 

described above is shown in figure S2. The highlighted pixels shown in the height image (the left 

top panel) are the ones processed through the algorithms described in this work. The values of 

the elastic modulus (sometimes called cell stiffness), the brush length and its grafting density are 

shown in corresponding panels. One can see quite large heterogeneity of the derived parameters. 

Such heterogeneity is quite typical for cancerous cells. This emphasizes the need for taking into 

account more than just one measurement per cell, which sometimes is done in some reports. 
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Self- consistency of the model used: Independence of the elastic modulus of the indentation 

depth 

Independence of the elastic modulus of the indentation depth is the necessary condition of 

applicability of any model in which the material is considered elastic and 

homogeneous/isotropic. This includes the model described in this work. Therefore, it is 

important to verify such independence. As was mentioned in the main text, such independence 

has been demonstrated that virtually all cells of study. A typical dependence of the elastic 

modulus on the indentation depth (the mean value of the indentation calculated for the fitting 

interval) is shown in figure S3.  
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FIGURE S3. An example of a typical dependence of the elastic modulus on the indentation 
depth (the mean value of the indentation calculated for the fitting interval). 


