Supplemental material

JCB

Liu et al., https://doi.org/10.1083/jcb.201606059

BIOLOG

CELL

ш О

THE JOURNAL

Figure S2. Additional data related to Figs. 2, 3, and 4. (A) Cells containing plasmids expressing Nvj2-GFP, Nvj2-GFP (L340A 1472A), or Nvj2-GFP (L340A 1472D) were grown to mid-logarithmic growth phase and immunoblotted with antibodies against GFP or the mitochondrial protein Porin. The Nvj2-GFP mutants were expressed at levels similar to Nvj2-GFP. Nvj2-GFP = 114 kD and Porin = 30.5 kD. (B) The expression of Nvj2p does not change when cells are treated with DTT. Cells expressing endogenous 3x HA-tag Nvj2 (Nvj2-3HA) were grown to mid-logarithmic growth phase in SC medium, then switched to fresh SC medium with or without 10 mM DTT, and incubated at 30°C for the indicated times. Cells were collected and immunoblotted with antibodies against HA and Porin. Nvj2-3HA = 90 kD. (C) Cells expressing Nvj1-GFP or GFP-Osh1 from plasmids were grown to mid-logarithmic growth phase in SC medium (t = 0) and then treated with or without DTT for an additional 3 h (t = 3 h). The cells were visualized live. Bar, 5 µm. (D) The PH domain of Nvj2p is necessary to target Nvj2p to Golgi membranes. Cells expressing the indicated GFP fusions from plasmids and endogenous Aur1-mKate are shown. White arrows indicate areas of Aur1-mKate and Nvj2(1-300)-GFP colocalization. Bar, 5 µm. (E) Scheme of tethering assay shown in Fig. 3 D. The N-terminal 40 residues of Nvj2p, which contain the TM domain, were replaced with MBP followed by 9 histidines. The resulting protein, MBP-His_{x9}-Nvj2, was purified from yeast and incubated with liposomes containing sucrose (heavy) and that contain the lipid DGS-NTA(Ni). This lipid is bound by the His, o in MBP-His, o Nvj2. The heavy liposomes were mixed together with liposomes that do not contain sucrose (light) and that contain trace amounts of radiolabeled triacylglycerol (TAG). Heavy liposomes will pellet at 16,000 g, but light liposomes will not unless they are tethered to the heavy liposomes. After centrifugation, the percent of light liposomes in the pellet was determined using a scintillation counter. (F) Cells expressing endogenously tagged Sec61-GFP and Aur1mKate were grown in media with DTT for 4 h as described in Fig. 4 (A and B). The percentage of Aur1-mKate vesicles associated with cortical ER (cER) or perinuclear ER (nER) was determined (vesicles not associated with the ER were not included in the totals). Mean ± SD of three independent experiments; n = 300 cells. DIC, differential interference contrast.

Figure S3. Additional data related to Fig. 5. (A) Scheme of precipitate formation by APEX2. Aur1-GFP-APEX2 localizes to medial-Golgi vesicles. Upon treatment of cells with DAB/H₂O₂ solution, APEX2 catalyzes the conversion of DAB into an insoluble precipitate. Subsequent treatment of the DAB polymer with OsO₄ generates EM contrast. (B) DAB staining does not produce contrast in cells that do not express APEX2. Wild-type cells not expressing APEX2 were fixed and subjected to DAB staining, and no precipitate was observed. Three examples are shown. (C) Nyi2p overexpression increases contact between the ER and vesicles that are likely medial-Golgi. Cells expressing endogenous Aur1-GFP and containing a plasmid overexpressing (OE) Nyi2p were chemically fixed and visualized by EM. In cells overexpressing Nvj2p, the ER frequently contacts Golgi-like vesicles. Green arrowheads denote close contacts between ER and Golgi-like vesicles. Right panel shows trace of ER in yellow of image in left panel. CW, cell wall; g, Golgi-like; LD, lipid droplet; M, mitochondria; N, nucleus; PM, plasma membrane; V, vacuole.

Figure S4. Additional data related to Fig. 6. (A) EGT colocalizes with cis- and medial-Golgi. Cells expressing EGT and the cis-Golgi marker Cop1-mKate (top panels) or EGT and the medial-Golgi marker Aur1-mKate (bottom panels). White arrows indicate the regions with colocalization signals. (B) Aur1-mKate localization is not altered by EGT expression. (C) Lysates from cells either with or without EGT produce similar amounts of [³H]ceramide when incubated with [³H]DHS (control for experiments in Fig. 4 E). Lysates were incubated with [³H]DHS for 2 h as described in Materials and methods, and the amount of radiolabeled ceramide formed was quantitated. Mean \pm SD; n = 3 independent experiments. DIC, differential interference contrast. Bars, 5 μ m.

Figure S5. Additional data related to Figs. 7 and 8. (A) The localization of $Nvj1(1-120)-Nvj2\Delta TM$ -GFP does not change in cells treated with DTT. Cells expressing $Nvj1(1-120)-Nvj2\Delta TM$ -GFP (green) and histone H2B-mCherry (red) were visualized live. Where indicated, cells were treated with 10 mM DTT for 4 h before visualization. Bar, 5 µm. (B) Growth curve of wild-type (WT) cells with indicated plasmids in SC medium. The strains were grown to mid-log-arithmic growth phase in SC with raffinose instead of glucose, washed, and resuspended in SC at an OD_{600m} of 0.02. Growth was the followed over time. Mean \pm SD; n = 3 independent experiments. (C) Serial dilutions of the indicated strains on SC plates with or without 0.15 µg/ml tunicamycin. (D) Nvj2p is probably not a negative regulator of serine palmitoyltransferase. Cells were grown for 4 h either with or without 10 mM DTT and labeled with [³H] serine, and the amount of radiolabeled DHS formed was determined. Mean \pm SD; n = 3 independent experiments. DIC, differential interference contrast.

Table S1.	Plasmids obtained f	rom a high-copy	library that allow	osh234∆ (cells to grow in	the presence o	f AbA

Suppressors	Gene	Hits
No. 1	BET1	
	CFD1	
	YILOO2W-A	
	INP51	
No. 2	UFE1	
	SKI7	
	RTS2	
No. 3	YFRO45W	
	CNN1	
	BNA6	
No. 4	AUS1	
	YOR012W	
No. 5	GUP2	
	POS5	
	MF(ALPHA) 1	
	UIP4	
No. 6	YDL007C-A	
	RPT2	
	PTC 1	
	PMP3	
	АЛТН 1	
No 7		
	ІГН1	
NO. 0		
	RFA43	
NO. 9		
	FINET34C	
10	INAM9	
NO. TU	WHIZ	
	CUES	
	GLO4	
No. 11	OSH3	
	QNSI	
No. 12	PDR 1	2
	PUF4	
No. 13	RGA1	2
	ADE2	
	AFI1	
	ORT1	
No. 14	IZH3	2
	SDO1	
	IRC25	
	YEH2	
No. 15	CIN4	
	SIP5	
	RIM11	
No. 16	YIL108W	
	PFK26	
	SEC24	
No. 17	TRI1	
	FUS2	
	RNH1	
	RNA1	
No. 18	ECM11	
	YDR444W	
	SSN2	
No. 19	YCG1	
	0114	

Table S1.	Plasmids obtained from a high-copy library that a	llow osh234	1 cells to grow in the presence of AbA (Continued)	
Suppressors	Gene	Hits		

Suppressors	Gene	Hits
	YSP2	
No. 20	SMF1	
No. 21	RRG1	
	RTR2	
	DOS2	
	DOA4	
	OCA6	
No. 22	RTA 1	4
No. 23	RSM27	
	RPSOA	
	GPI1	
NL 04	SUI	
No. 24	PDET	
	BKKO	
NI 05	ZIP2	
No. 25	PDR3	
N 0/		2
190. 20		2
No. 27	UBK2	0
190. 27	VIMAD TEF 4	2
No. 28	PIP1	
110.20	VELO22C	
	GEA2	
	YEL025C	
No. 29	OSH7	
110.27	QCR10	
	HSE1	
	RPL14B	
No. 30	UBR 1	
	TIM13	
	QCR9	
	RNR4	
	OKP1	
No. 31	EHT1	
	ECM31	
	SWD3	
	UMP1	
	FZO1	
	SMY2	
No. 32	MYO5	
	HFD1	
No. 33	AKR2	
	SHE4	
	YOR034C-A	
	EXO1	
No. 34	FKS1	
	YLR342W-A	
	GAS2	
No. 35	INP53	
	RGS2	
	VAM3	
	LEU9	
No. 36	OSH6	
	PAP1	
No. 3/	RPN13	
	URA4	
	YLR419W	
	DCK1	

Table S1.	Plasmids obtained from a high-copy library that allow osh2341 cells to grow in the presence of AbA (Continued)	
-----------	--	--

Suppressors	Gene	Hits
No. 38	SHR3	
	NOP6	
	YDL211C	
No. 39	PGI1	
	MSI1	
	AIM4	
	MED8	
	RIM2	
	RPL21A	
No. 40	SSP1	
	PES 1	
	GND1	
No. 41	DRS2	
	MAK16	
	ITF 1	
No. 42	EMP65	2
110. 42	COX15	2
	RTR 1	
	MAG1	
No. 13		2
110.43		Z
NI 44	EMPOS	
INO. 44	TDR338C	
	MRP528	
	YDR336VV	
	FCFT	_
No. 45	NVJ2	2
	RDS3	
	ASR1	
	YPR089W	
No. 46	OSH2	
	ERP3	
No. 47	UTP18	
	YJL068C	
	YJL070C	
	ARG2	
	PSF2	
No. 48	FET5	
	YFL040W	
No. 49	YPS3	
	YLR125W	
No. 50	FDC1	
	PAD 1	
	STL1	
No. 51	STP2	
	ERG11	
No. 52	RCK1	
	ARI1	
	AMS1	
No. 53	UIP3	
	YAR023C	
	YAR028W	
No. 54	ENT5	
	CTH1	
	GIR2	
	NI IM1	
No. 55	CTE19	
No. 56	9F320	
INU. JU		
	FAUL	

Table S1.	Plasmids obtained from a high-cop	y library that allow osh234	4 Δ cells to grow in the presence of A	AbA (Continued)
-----------	-----------------------------------	-----------------------------	---	-----------------

Suppressors	Gene	Hits
	FMP10	
No. 57	TGL1	
	SDH3	
	MRP8	
No. 58	NOC3	
	CMS1	
	YLR001C	
No.59	ARO10	
	YRA 1	
	YDR381C-A	
	YDR379C-A	
No. 60	OSH2	
No. 61	SRP14	
	UBX3	
	RAM1	
No. 62	ATR 1	
	NAB6	
	NGL3	
No. 63	RHO4	
	DYN1	
No. 64	BCY1	
	CAP2	
	CKA1	
No. 65	STP2	
	ERG11	
No.66	VPS33	
	AFG2	
	SKI2	
No. 67	SEC24	
	HPM1	
	COX5B	
No. 68	VPS30	
	DBP1	
	MEI5	
	IDI 1	
	BEM3	
No. 69	WTM2	
	WTM1	
	MCP1	

The genes in bold indicate the functional genes we considered as rescuing the impaired growth of osh234 Δ in the presence of AbA. The hits indicate how many times the plasmids are screened out from the selection.

Table S2. Plasmids used in this study

Plasmids	Description	Source
LKE132	EGT; express Svp26TM-GFP-Ubc6 under GPD promoter ((LEU2/CEN)	This study
pMCZ-Y	Express lacZ under the KAR2 promoter (URA3/CEN)	Y. Yeª
LKE219	Express Lag1 under GAL promoter (URA3/2 µ)	This study
LKE260	Express Nvj2 under Nvj2 promoter (<i>LEU2/2</i> μ)	This study
pSH16	Express Orm1 under Orm1 promoter (<i>LEU2/2 µ</i>)	A. Chang ^b
LKE285	Express <i>Nvj2ΔTM</i> under Nvj2 promoter (<i>LEU2/2</i> μ)	This study
LKE286	Express Nvj2 Δ PH under Nvj2 promoter (LEU2/2 μ)	This study
LKE287	Express <i>Nvj2ΔSMP</i> under Nvj2 promoter (<i>LEU2/2 μ</i>)	This study
LKE307	Express Nvj1(1–120)-Nvj2ΔTM chimera under Nvj2 promoter (LEU2/2 μ)	This study
LKE309	Express Nvj1(1–120)-Nvj2ΔTM-GFP chimera under Nvj2 promoter (LEU2/2 μ)	This study
LKE311	Express <i>Nvj2-GFP</i> under Nvj2 promoter (<i>LEU2/2</i> µ)	This study
LKE315	Express <i>Sec63-Nvj2ΔTM</i> chimera under Nvj2 promoter (<i>LEU2/2</i> μ)	This study
LKE314	Express Sec63-Nvj2ΔTM-GFP chimera under Nvj2 promoter (LEU2/2 μ)	This study
LKE327	Express Aur1-GFP-Apex2 under Aur1 promoter (URA3/CEN)	This study
LKE340	Express Nvj2 (L340A I472A) mutant under Nvj2 promoter (<i>LEU2/2 μ</i>)	This study
LKE342	Express Nvj2 (L340D 1472D) mutant under Nvj2 promoter (<i>LEU2/2 μ</i>)	This study
pAT286	Express MBP under GAL promoter (URA3/CEN)	This study
pAT836	Express MBP-(His)x9-Nvj21TM under GAL promoter (URA3/CEN)	This study
LKE345	Express MBP-(His)x9-Nvj2∆TM(L340D 1472D) under GAL promoter (URA3/CEN)	This study
LKE327	Express Aur1-GFP-Apex2 under Aur1 promoter (URA3/CEN)	This study
pAT155	Express Nvj2 under GPD promoter (URA3/CEN)	This study
pAT165	Express Plant Nvj2 (AT1G73200) under GPD promoter (URA3/CEN)	This study
pAT177	Express Human Nvj2 (HT008) under GPD promoter (URA3/CEN)	This study

^aY. Ye, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD. ^bA. Chang, University of Michigan, Ann Arbor, MI.

Table S3. Strains used in this study

Strains	Relevant genotype	Source
LKY001	BY4741 mat a his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	This study
LKY002	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0	This study
LKY077	BY4742 mat a his3∆1 leu2∆0 lys2∆5 ura3∆0 H2B-mCherry::URA3	This study
LKY297	mat α sec18-1 ura3-52 his4-619	This study
LKY348	mat a leu2-3,112 ura3-52 his3∆200 lys2-801 trp1∆901 suc2∆9 osh2::URA3 osh3::LYS2 osh4::HIS3	C. Behª
LKY374	mat a leu2-3,112 ura3-52 his3∆200 lys2-801 trp1∆901 suc2∆9 <i>osh2::KanMX6 osh3::LYS2 osh4::HIS3</i>	This study
LKY392	BY 4741 mat a his3∆1 leu2∆0 met15∆0 ura3∆0 <i>nvj1::KanMX6</i>	This study
LKY393	BY 4741 mat a his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 <i>nvj2::KanMX6</i>	This study
LKY394	mat a leu2-3,112 ura3-52 his3∆200 lys2-801 trp1∆901 suc2∆9 osh2::URA3 osh3::LYS2 osh4::HIS3 nvj1::KanMX6	This study
LKY395	mat a leu2-3,112 ura3-52 his3∆200 lys2-801 trp1∆901 suc2∆9 osh2::URA3 osh3::LYS2 osh4::HIS3 nvj2::KanMX6	This study
LKY398	mat α sec18-1 ura3-52 his4-619 nvj2::KanMX6	This study
LKY404	BY4742 mat a his3A1 leu2A0 lys2A5 ura3A0 Cop1-mKate::URA3	C. Burd ^b
LKY405	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>Aur1-mKate::URA3</i>	C. Burd
LKY411	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>Aur1-mKate::URA3 nvj1::KanMX6</i>	This study
LKY414	ATCC 201388: mat a his3A1 leu2A0 met15A0 ura3A0 Nvj2-GFP::HIS3	Huh et al., 2003
LKY415	ATCC 201388: mat a his3∆1 leu2∆0 met15∆0 ura3∆0 Nyj2-GFP::HIS3 nyj1::KanMX6	This study
LKY416	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>nvj2::HIS3</i>	This study
LKY417	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6	A. Chang
LKY419	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT nvj2::HIS3	This study
LKY420	BY4742 mat α his3Δ1 leu2Δ0 iys2Δ5 ura3Δ0 <i>orm2::KanMX6 nvj2::HIS3</i>	This study
LKY421	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6 nvj2::HIS3	This study
LKY429	BY 4741 mat a his3A1 leu2A0 met15A0 ura3A0 <i>lag1::HIS3</i>	This study
LKY443	BY4742 matα his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6 lac1::HIS3	This study
LKY445	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6 lag1::HIS3	This study
LKY447	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6 lcb4::HIS3	This study
LKY452	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>Nvj2-3HA::KanMX6</i>	This study
LKY454	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 dga1::KanMX6 lro1::lox-HIS3-lox	This study
LKY456	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 dga1::KanMX6 lro1::lox-HIS3-lox nvj2::HIS3	This study
LKY457	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6 nvj1::HIS3	This study
LKY458	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 orm1::clonNAT orm2::KanMX6 Nvj2-GFP::HIS3	This study
LKY463	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>Aur1-mKate::URA3 Nvj2-GFP::HIS3</i>	This study
LKY464	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 Aur1-mKate::URA3 Nvj2-GFP::HIS3 nvj1::KanMX6	This study
LKY473	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 Aur1-mKate::URA3 Sec61-GFP::HIS3	This study
LKY481	ATCC 201388: mat a his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 <i>Aur1-GFP::HIS3</i>	, Huh et al., 2003
LKY482	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>Aur1-mKate::URA3 Sec61-GFP::HIS3 nvj1::KanMX6</i>	This study
LKY484	ATCC 201388: mat a his3∆1 leu2∆0 met15∆0 ura3∆0 <i>Aur1-GFP::HIS3 nvj2::KanMX6</i>	, This study
LKY485	BY 4741 mat a his3∆1 leu2∆0 met15∆0 ura3∆0 <i>arv1::KanMX6</i>	, This study
LKY487	BY4742 mat α his3Δ1 leu2Δ0 lys2Δ5 ura3Δ0 <i>Aur1-mKate::URA3 Sec61-GFP::HIS3 nvj2::KanMX6</i>	This study
ATY989	BY 4741 mat a his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 sec18-1::LEU2 Nvj2-GFP::HIS3	This study

°C. Beh, Simon Fraser University, Burnaby, Canada. ^bC. Burd, Yale School of Medicine, New Haven, CT.

Reference

Huh, W.K., J.V. Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S. Weissman, and E.K. O'Shea. 2003. Global analysis of protein localization in budding yeast. *Nature*. 425:686–691. http://dx.doi.org/10.1038/nature02026