Supplemental material

JCB

Kadlecova et al., https://doi.org/10.1083/jcb.201608071

Figure S1. **Validation of AP2 mutant cell lines.** To ensure full incorporation of mutant subunits into intact AP2 complexes, antibodies against AP2 α were used to immunoprecipitate (IP) AP2 complexes from parental htertRPE (RPE) or the indicated mutant cells expressing siRNA-resistant wild-type or mutant AP2 subunits after siRNA-mediated depletion of the endogenous subunit. Western blot analysis was performed against exogenously expressed WT or mutant subunit and a second endogenously expressed subunit using antibodies described in Materials and methods. (A) Cells expressing α^{wf} and α^{PIP2} bearing a brain-specific insert in the flexible linker. (B) Cells expressing β^{Zwf} and β^{ZPIP2} bearing a Flag epitope in the flexible linker. (C) Cells expressing μ^{Zwf} , $\mu^{\text{Zcorgo-}}$, and μ^{ZPIP2} bearing myc epitopes in the flexible linker. (D) Cells expressing α^{Zwf} and $\alpha^{\text{Zcorgo-}}$ expressing Flag tags at their C terminus. (E) Cells expressing μ^{ZT156A} bearing a myc tag in the flexible linker. Note in the latter case that the μ^{ZT156A} mutant is inefficiently incorporated into AP2 complexes compared with endogenously expressed μ^{Z} . (F) Immunofluorescence localization of AP2 complexes containing mutated subunits $\alpha^{\text{PIP2-}}$, $\mu^{\text{Zerago-}}$, $\mu^{\text{ZPIP2-}}$, and $\alpha^{\text{Zerago-}}$. Mouse monoclonal antibody against the AP2 α subunit was used to verify punctate pattern of AP2 complexes with mutated subunits at the plasma membrane and at the CCPs. Bars, 10 $\mu^{\text{Zerago-}}$.

Figure S2. Fluorescence analyses of clathrin intensity at CCPs in α^{PIP2-} cells show that efficient clathrin recruitment in the first 10–20 s predetermines stabilized and productive growth of a CCP. The progression of CLC-EGFP recruitment at individual CCPs in α^{wt} (left) and α^{PIP2-} (right) cells is represented as a heatmap. Increase of CLC-EGFP intensity is plotted as a function of elapsed lifetime of a given CCP (x-axis), for all CCP lifetimes ranging from $\tau=5$ to 90 s (y-axis). Total CCP lifetime is on the y-axis (top, short lifetimes; bottom, long lifetimes), the current "age" of the CCP is on the x-axis from left to right (the data stops at the diagonal because CCP age can never be greater than total lifetime). CLC-EGFP intensity is depicted as the color at each location. The fluorescence intensity profiles in α^{wt} cells show clearly defined transitions (blue to green to yellow to red) at early stages of CCP lifetime at the left side of the α^{wt} heatmap, indicative of highly regulated CCP growth and maturation. This also suggests that CCPs that recruit clathrin at a net faster rate in the first 10–20 s are the ones that will have long lifetimes and ultimately grow to larger sizes, as apparent from the total overall amount of CLC-EGFP. In contrast, transitions are blurred in the α^{PIP2-} cells, and the relative maximum intensity at each lifetime is reached much later (i.e., at longer CCP ages). The CCP intensities in the α^{PIP2-} cells are significantly lower than in α^{wt} cells, indicating defects in growth and maturation.

Figure S3. Abrogation of α –PIP2 interactions leads to a general cargo sorting defect. Heatmap representing the relative changes in Pearson correlation coefficient (PC) between EGFP-CLCa and the indicated CD8 chimeras and other CME cargo showing more severe defects in cargo loading into CCPs in α^{PIP2-} cells compared with $\mu 2^{PIP2-}$ cells. AP2 recruitment and stabilization at CCPs is also reduced in the α^{PIP2-} cells, but not in $\mu 2^{PIP2-}$ cells.

Figure S4. $\mu 2^{PIP2-}$ cells show no apparent defect in TfnR endocytosis but have a defect in CCP maturation, and efficient CME is restored by activation of AAK1 kinase and increased phosphorylation of $\mu 2$. (A) Transferrin receptor internalization was measured in control and $\mu 2^{PIP2-}$ cells using a monoclonal anti-TfnR antibody as ligand. TfnR uptake after 5 min, which is reflective of the rate of TfnR uptake, was calculated as a percentage of the initial total surface-bound antibody. Data represent mean \pm SD, n=3. n.s., not significant. (B and C) Epifluorescence (Epi)/TIR ratio, which is indicative of curvature acquisition, for individual CCPs plotted as a function of CCP lifetime in $\mu 2$ VVT (B) and $\mu 2^{PIP2-}$ cells (C), as indicated. $\mu 2^{PIP2-}$ cells exhibit 2.5-times increased numbers of short-lived, flat, and presumably abortive CCPs, indicative of a defect in CCP maturation. (D) AP2 complexes were immunoprecipitated with anti- $\mu 2^{PIP2-}$ cells to Western blotting using anti- $\mu 2^{PIP2-}$ and anti-T156 phospho- $\mu 2^{PIP2-}$ and indicated. $\mu 2^{PIP2-}$ cells exhibit an increase $\mu 2^{PIP2-}$ cells. (E) Treatment with the AAK1 inhibitor, Compound 2, decreases $\mu 2$ PT156 levels in both $\mu 2^{PIP2-}$ cells.

Figure S5. Adenoviral-mediated expression of model cargo receptors in htertRPE cells. (A) Immunofluorescence showing colocalization of model cargo CD8-YAAL or CD8-EAAALL detected with mouse monoclonal antibody UCHT-4 against CD8 relative to EGFP-CLCa in WT, μ 2^{cargo-}, or σ 2^{cargo-} mutant cells as indicated. Bars, 10 μ m. (B) Western blot showing equal levels of expression of CD8 chimeras in μ 2^{cargo-} and σ 2^{cargo-} cells.

Provided online is a zip file that includes the custom Python and R scripts used for all computational analyses conducted in this study.