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Figure S1. Specificity of anti-Dachs antibodies and Dachs localization in ft mutant cells when ectopically expressed and in strong dco alleles. Related
to Fig. 1. (A) Diagram of Dachs structure, with major domains and regions used as antigens for making antisera indicated. The myosin head domain is
indicated in red. The blue lines show Dachs N and C antigens. (B and C) Staining of dachs null clones demonstrates that the antisera specifically recognize
Dachs in tissues. Dachs staining with anti-Dachs antibodies (B for anti-Dachs N and C for anti-Dachs C) is lost in dachsS’? mitotic clones. Mutant clones
are marked by the absence of anti-LacZ staining (green in B and C). (D-F) ft mutant mitotic clones (GFP negative) were induced in wing imaginal discs in
the background of hh-Gal4-driven UAS-Dachs expressed in the posterior compartment (yellow dotted lines). (D) In the apical region, overall Dachs staining
appears higher in cells ectopically expressing Dachs than in ft mutant cells. (E) fj-lacZ is up-regulated in ft mutant cells and only weakly up-regulated in
cells ectopically expressing Dachs. (F) Optical cross sections at the yellow line in E. Ectopically expressed Dachs accumulates at the AJR and in the basal
cytoplasm. (G-H) Anti-Dachs staining in dcoi®? (G) and dco88 (H) mutant cells. Mutant clones were induced in a Minute background and marked by the
absence of CD2 staining. Anti-Dachs staining at the AIR is elevated in dco mutant clones. (I) Comparison of Dachs staining between wild4ype (+/+) and
dcoi?®?/+ cells. The mitotic clones are marked by the absence of anti-LacZ staining. dcoi®? homozygous clones are eliminated from the imaginal epithelium
in the absence of a Minute mutation to confer a growth advantage. The boundary between wild-type and dcoi®?/+ cells is marked with yellow dotted lines.
The intensity of anti-Dachs staining in wildtype cells (+/+) is lower than that of dcoi??/+ cells. Bars, 5 pm.
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Figure S2. CRISPR-Cas9-induced app dlleles and their planar cell polarity (PCP) phenotypes. Related to Fig. 2. (A) The molecular lesion associated
with app’?3. A 4-bp deletion near the N terminus of App creates a frameshift that leads to a premature stop codon. TM1, first transmembrane domain.
(B) CRISPR-Cas9-induced mutations in the DHHC domain. Target sequence, donor DNA, and restriction sites are shown. HA-L, left homology arm; HAR,
right homology arm. (C-H) PCP phenotypes in the wing. PCP in wildtype (C) or app (D-H; genotypes as indicated) mutant wings. Blue arrows, normal
PCP; red arrows, abnormal PCP. The details of hair polarity in adult wings from proximal (middle) and distal (right) regions correspond to the green boxes
in C. The overall frequency of PCP defects is shown in each photo (n > 20 for each genotype). Bar, 100 pm.
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Figure S3. Effects of ectopic expression of wild-type and mutant alleles of app on wing size, Dachs accumulation at the AJR, and the ex-lacZ Hippo
reporter. Related fo Fig. 2. (A-D) Representative wings from wild-type (A), app'23 (B), UAS-app; hh-gal4 app'?3/app'?3 (C), and UAS-appP*s; hh-gal4
app'?3/app'?3 (D) animals. Ectopic expression of wildtype App rescued growth in posterior compartment (C), whereas expression of App®s reduced
growth (D). (E and F) hh-gal4-driven wildtype App expression rescued Dachs localization at the AJR. (G and H) hh-gald-driven AppPHHS expression
resulted in decreased Dachs localization at the AIR. (I) Dachs staining in a ft mutant wing epithelium. Dachs level is similar across the anterior—posterior
boundary, which is marked with a yellow dotted line in all panels. (J) Ectopic wildtype App expression caused increased Dachs accumulation at the AIR
in ft mutant cells. (K and L) Ectopically expressed AppPHs (K) or AppPAHC (L) has little or no effect on Dachs. (M) Expression of ex-lacZ was unaffected in
app'#3 mitotic clones. (N) Wild-type ex-lacZ expression. (O and P) Ectopic expression of wildtype App had no effect on ex-lacZ expression (O), whereas
expression of AppPs led to down-regulation of ex-lacZ expression (P). Bars, 5 pm.
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Figure S4. Mutation of possible palmitoylation sites in Dachs does not significantly affect its function. Related to Fig. 3. (A) The structure of Dachs indi-
cating Cys residues mutated to Ser for these experiments. (B) The predicted palmitoylation site scores using CSS-Palm 2.0 in Dachs, Hedgehog (Hh), Spitz
(Spi), Gilgamesh (Gish), PSD-95, and H-Ras. Dachs positions in red indicate substituted cysteines. (C-H) Wings of the indicated genotypes showing the
effects of ectopic expression of different Cys mutants. All promoted overgrowth similarly to wild-type Dachs. (-M) Cys substitution mutants in Dachs do not
affect its localization at the AR (anti-V5 staining). Bars: (C) 100 pm; () 5 pm.
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Figure S5. Palmitoylation of Ft fragments and mutation of intracellular Cys residues in ft using CRISPR-Cas9. Related to Fig. 4. (A) The structure of F:HA
indicating major domains. Ft is cleaved and produces 110- and 68D (Ft mito) fragments (arrows) at the C-terminal end. (B) Palmitoylation of Ft fragments
in vivo. F::HA was expressed using da-gal4. The merged image (left), anti-HA staining (IP; middle), and palmitoylation (Palm; right) are shown. Full-length Ft
(Ft FL), Ft 110-kD, and Ft mito are all palmitoylated. (C) Without phosphatase treatment, F12ECP expressed in S2 cells migrated as a smeared band positive
for palmitoylation (top). This reduced to a single band after lambda phosphatase treatment (middle; arrow indicates F2ECP). Substitution of all three intra-
cellular cysteines strongly reduced the palmitoylation signal (bottom). (D) Target sequence, donor DNA, and restriction site are shown. Asterisk indicates
mutation introduced in the PAM sequence to prevent cleavage by the f14 guide RNA (gRNA).
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Table S1.  Viability of app, dco, and double mutant allele combinations

Wild type dco® app'?3 appPHHs dco?® app'?3 dco’ appPHHs
expected 125 289 226 128.5 185.5 280.5
observed 118 0 128 15 89 131
% viability 94.4 0 56.6 89.5 48 46.7
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