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S1 Molecular dynamics simulation of HLA-B*44 molecules

S1.1 Atomistic molecular dynamics simulation protocol

All the molecular dynamic simulations were performed using the IRIDIS High Performance Computing
Facility, and we acknowledge the associated support services at the University of Southampton in the com-
pletion of this work.

The starting conformations are experimentally determined structures from the RSCB Protein Databank.
These were the X-ray crystal structures of HLA-B*44:02, PDB id: 1M6O and HLA-B*44:05, PDB id: 1SYV.
The in silico W147A point mutation to the structure of HLA-B*44:05 was performed using MODELLER (1).

The GROMACS version 4.5.3 (2, 3) molecular dynamics package was used for the all atom simulations.
The simulations used the Amber99SB-ILDN (4) force field and TIP3P (5) explicit water molecules using the
Simple Point Charge water system (6), and Sodium counter ions were added to neutralise the charge of the
system. The protein structures were placed in rhombic dodecahedron shaped box centred at 1.5 nm from
the edge with periodic boundary conditions. Covalent bond lengths were constrained using the P-LINCS
algorithm (7) and the water angles were constrained using the SETTLE algorithm (8) allowing an integration
time step of 2 fs to be used.

Nosé-Hoover temperature coupling (9, 10) and Parinello-Rhaman pressure coupling (11, 12) used a time
constant of 0.5 ps with reference baths of 300 Kelvin and 1 bar respectively to maintain the average thermo-
dynamic properties of the protein and solvent comprising the system. Electrostatic interactions use a cut-off
of 1 nm with the interactions beyond this cut-off treated using the particle mesh Ewald method (13). Van
der Waals forces used a cut-off of 1 nm. The neighbour list is updated every five steps.

Each system initially underwent an energy minimization over 1000 steps of 2 fs to relax the structure and
remove the forces from the systems that were introduced by the protonation of the molecule and addition of
solvent. This was followed by a 5 ns equilibration of the water surround the protein with the protein atoms
restrained using a randomly generated initial starting velocity.

Full production runs were performed with the position restraints released. To analyse conformational
dynamics, concatenated trajectories of 420 ns were created from three independent repeats of 150 ns, with
the first 10 ns of each simulation discarded. Two additional control simulations were performed over 45 ns
each.

For the simulations using distance restraints, a simple force constant of 7.437 kJ mol−1 nm−2 was applied
to the selected Cα atoms for the restraint. This is equivalent to 3 kbT, where kb is Boltzmann’s constant and
T is temperature in Kelvin. For the control simulations we used a strong restraint of 100 kJ mol−1 nm−2

equivalent to 40 kbT.
The system components are summarised in Table S1. Parameter files for equilibration and the initial

production runs were kindly provided by Tom Piggot (University of Southampton, UK) along with his
assistance in the installation and invaluable advice in using GROMACS. Quality assurance and post processing
was performed using a combination of the suite of utilities provided with GROMACS. In some cases these
utilities have been adapted as described in the text where relevant. Additional post-processing tasks were
performed using MATLAB™ and bespoke UNIX awk scripts. Visualisation of the protein structures and
molecular dynamics trajectories was performed using the VMD (14) and USCF Chimera (15) packages.
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System Components Temperature RMSD
Protein atoms Water Na+ Ions K nm

HLA-B*44:02 p.b. 6147 26668 12 300 2.58
HLA-B*44:02 p.f. 6002 26717 11 300 2.38
HLA-B*44:05 p.b. 6156 26319 11 300 2.55
HLA-B*44:05 p.f. 6011 26354 10 300 2.44

HLA-B*44:05 W147A p.b. 6142 26014 11 300 2.46
HLA-B*44:05 W147A p.f. 5997 26046 10 300 2.40
HLA-B*44:02 p.f. α3 rest. 6002 26717 11 300 2.38

HLA-B*44:02 p.f. α3 rest. cntl.1 6002 26717 11 300 2.37
HLA-B*44:02 p.f. α3 rest. cntl.2 6002 26717 11 300 2.36

Table S1: Molecular dynamics simulations summary table
Three independent repeats of 150 ns were performed for HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05 W147A. For
HLA-B*44:02 p.f. α3 rest, 5 simulations of 90 ns were performed. For the distance restraint controls 3 simulations of
20 ns were performed. The notation p.b. is peptide bound and p.f. is peptide free. α3 rest. are distance restrained
simulations for positions 220-227. α3 rest. cntl. are the control distance restrained simulations: 1 are restrained positions
188-194 and 2 are restrained positions 250-257. RMSD is mean value of the backbone atoms versus the average structure
from final 130 ns of a representative simulation for the long simulations and the final 10 ns for the short simulations.
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S1.2 Simulation stability

The stability and convergence of the molecular dynamics simulations towards an equlibrium state was
assessed by calculating the Root Mean Square Fluctuation for blocks of each trajectory as plotted in Figure
S1. These indicate that the RMSF between blocks is less than 1 Å and that all the simulations were stable.
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Figure S1: Time block assessment of the stability of the molecular dynamics simulations HLA-B*44:02, HLA-B*44:05,
HLA-B*44:05 W147A and HLA-B*44:02 α3 restrainted . Each plot shows the Root Mean Square Fluctuation (RMSF) of
the atoms from their average position during each 10 nanosecond time block of each molecular dynamics simulation
trajectory, and for 5 ns time blocks for the short control simulations, as an indication of the overall stability of each
simulation and between simulations.
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S1.3 Global motions

Global motions of the molecular dynamics simulations were analysed in three ways: Normalised Covari-
ance Analysis, Functional Mode Analysis and Probability Density.

S1.3.1 Normalised covariance analysis

We analysed the degree of correlation between the motions of pairs of atoms of the MHC I complex over
the course of the combined simulation trajectory. Highly correlated atoms are moving together and this
therefore this indicates they are forming more a rigid body-like structure.
A mass weighted variance-covariance matrix was built using the Cα atoms. This is a symmetric 3N × 3N
matrix comprising of the fluctuation of the atom positions with coordinates x as a function of the trajectory
such that:

C =< (x(t)− < x >) . (x(t)− <x >ᵀ) > (1)

where <> indicates the conformational ensemble average. This matrix C therefore contains as elements,
for each atom pair, the difference between the mean product of their atomic positions and the product of
their mean atom positions i.e. the difference between their average position as a pair and the product of
their individual average positions. Atom pairs moving together in the same direction give rise to positive
covariances and pairs moving in the opposite direction give rise to negative covariances. Non-correlated
atoms give near zero covariances. The variance for each atom is contained on the main diagonal.

We calculate the normalized covariance of the atoms by summing the x, y and z components of the
matrix and normalizing with the self-covariance of the atoms. Re-expressing equation 1 for atoms i and j as:

Cij =< (xi(t)− < xi >) . (xj(t)− <xj >> (2)

the normalized covariance is:

C
′
ij =

Cxixj + Cyiyj + Czizj√
(Cxixi + Cyiyi + Czizi ).(Cxjxj + Cyjyj + Czjzj)

(3)

This yields a matrix containing the correlations between the atoms in terms of the Pearson Correlation
Coefficient for each pair of atoms. Extracting atom pairs above a given magnitude of correlation e.g. greater
than 0.7, it is possible to create an image of the correlated atoms on the three dimensional structure as a
web of connections (16). This gives an indication of which atoms are moving together during the simulation
which in turn indicates parts of the structure that are acting as rigid bodies or where there is potential
communication between parts of the structure. It does not however indicate the magnitude of the motions,
only that there are correlated above a certain threshold i.e. there is a linear relationship between the motion of
correlated atoms as defined by the strength of correlation coefficient chosen. Therefore this analysis cannot
tell us anything about any non-linear relationships between the atoms of the protein. For this analysis we
used an amended version of the GROMACS g_covar utility and the g_anaeig utility.

We used a common peptide free reference structure with the combined trajectories for the analysis. This
therefore excludes correlations with the peptide in the peptide bound state.
Fig. S2 shows the web of correlations between all pairs of Cα atoms with a normalised covariance of greater
than 0.7 for the peptide bound and peptide free HLA-B44 simulations. It’s important to reiterate this is
simply a dimensionless number indicating the degree above which we observe a correlation between a pair
of atoms and that the choice of 0.7 is some what arbitrary. The choice of Cα atoms is simply to provide
clarity in visualization of the correlations.
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Figure S2: HLA-B*44 Normalised covariance webs
Cα atom pairs with a covariance yielding a correlation coefficient greater than 0.7 are shown connected by red lines for
the peptide bound and peptide free simulations. The red lines indicate that connected atoms move together during the
simulation, but not the direction or magnitude of the motion. Correlations with the peptide have been excluded for
clarity. The calculations were done using an amended version of the GROMACS g_covar utility and the g_anaeig utility.
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S1.3.2 Functional mode analysis

Having performed Principal Component Analysis using the GROMACS g_covar and the g_anaeig utilities,
as previously described (17), to extract top 50 modes accounting for ∼90% of the total atomic motion, we
performed Functional Mode Analysis (FMA) of peptide free MHC, as proposed and implemented by Jochen
Hub and Bert de Groot, . It aims to detect the collective atomic motions directly connected to protein
function. It therefore requires the selection of a “functional quantity” that describes the functional state of
the protein to be correlated with the protein motion. A full description of the theory and the method is
detailed in the publication by Hub (18).

In the absence of experimental data to guide the choice of a functional quality, we make the observation
that in the X-ray crystal structure the peptide is buried inside the peptide binding groove with no easy
means of entry or exit. Yet we know that peptides load and can be exchanged. We identified a potential
hinge in the α2−1 helix and measured the distance fluctuations in this region to define a functional quantity
for peptide binding and unbinding. It only makes sense to consider this for peptide free MHC as in the
peptide bound state there are no significant distance fluctuations.

Correlating the changes in distance with the overall motion of the molecule as described by the principal
components yields a single collective motion for MHC I associated with the conformational changes in the
peptide binding groove. The method is implemented using the common reference structure created for
principal component analysis and the FMA package developed by Jochen Hub (18):

1. From identification of the two hinge points common in the α2−1 helix, two regions were defined on
either side of the F-pocket of the MHC molecule peptide binding groove. Residues 135 to 156 on the
α2−1 helix and residues 69 to 85 on α1 helix as coloured red in Fig. S3

2. For each combined trajectory in the peptide bound and peptide free states the distance was measured
between the centres of mass of these two regions over the duration of the concatenated simulation.
This distance is a function of time dα1α2 and is the functional quantity.

3. Assuming dα1α2 is approximately a linear function of the principal components, a collective vector a
was constructed from the principal components derived by diagonalization of the covariance matrix.
As the first 50 principal components account for∼90% of the atomic mean square atomic fluctuations,
this subset of the principal components was considered a reasonable set for the construction of a.

4. Quantifying the correlation using the Pearson correlation coefficient R, the motion along a is maxi-
mally correlated to the change in dα1α2 to yield the Maximally Correlated Motion (MCM) as function
of time given by projection pa, such that:

R =
cov (dα1α2 , pa)

σdα1α2
.σa

(4)

5. The process of maximizing the R generates a model for dα1α2 as a function of the principal components.
The model is cross validated (Fig. S3) by dividing the trajectory into model building frames and cross
validation frames. We used 350 ns for model building and 70 ns for cross validation. We test the ability
of the model to predict the value of R in the cross validation set as compared with that calculated from
the data (Fig. S3). This was analysed to determine contributions from the different principal compo-
nents to the variance of the model and therefore the influence of individual principal components on
dα1α2 (Fig. S3)

6. The MCM was then further optimized to find the most probable motion given the input ensemble of
structures. This yields the ensemble-weighted Maximally Correlated Motion (ewMCM) in accordance
with the free energy landscape described by the input trajectory (18). This estimates the most probable
collective motion for the MHC Class I molecule that achieves a substantial change in dα1α2 which is
visualised as a projection of the trajectory onto this eigenvector (Fig. S3).
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Figure S3: HLA-B*44 peptide free functional mode analysis
Using two hinge points in the α2−1 helix, two regions were defined on either side of the F-pocket of the MHC molecule
peptide binding groove. Residues 135 to 156 on the α2−1 helix and residues 69 to 85 on α1 helixwo regions were defined
on either side of the F-pocket of the MHC molecule peptide binding groove. as coloured red and the distance between
the centres of mass of these backbone atoms was measured as a function of simulation time to become functional
quantity dα1α2 . For each peptide free HLA-B*44 molecule, panels A-D, a model building set of 350 ns is shown in red
and the resulting cross-validation model prediction for the dα1α2 shown in green over the actual measurements in black.
A scatter plot of the data versus the cross validation set predictions. This plot indicates the individual contributions of
each eigenvector used in constructing the model to the variance in dα1α2 in grey bars and the cumulative contribution
in blue. The resulting ensemble weighted Most Correlated Motion contributing to a change in the distance across the
F-pocket shown as a porcupine plot. Cones attached to each backbone atom indicate the direction and amplitude of
motion of this mode in Å.
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S1.3.3 Probability density analysis

Probability densities were calculated to characterise the conformations explored by the MHC structures in
two ways, one using intra-molecular distances and the other combining intra-molecular distance and angle
between the heavy chain domains. Intra-molecular distances were chosen from the identification of the two
common hinge points in the α2 helix from the conformational angles analysis, two regions are defined on
either side of the F-pocket of the MHC molecule peptide binding groove. Residues 135 to 156 on the α2 helix
and residues 69 to 85 on α1 helix as coloured red in Fig. S4A. The domain-domain distance was defined
as between residues 96-100 in the peptide binding groove platform and the flexible α3 domain region 220-
227, also coloured red in Fig. S4A. These distances were measured for the combined simulations using the
GROMACS utility g_dist and joint probability densities for these two distances were then calculated using
MATLAB™ as plotted in Figures 4 and 5 in the main manuscript.
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Figure S4: HLA-B*44 joint distance probability densities
A. Two distances were measured between the centre of mass of backbone atoms of the regions coloured red. The distance
across the F-pocket was defined as between residues 135 to 156 on the α2 helix and residues 69 to 85 on α1 helix. The
domain-domain distance was defined as between residues 96-100 in the peptide binding groove platform and the loop
220-227 in the α3 domain. The distances were calculated using the GROMACS utility g_dist. Residues 220-227 were used
for the peptide free restrained simulations of HLA-B*44:02. B. Coloured blue on the structure of MHC I are the sites at
which the residues were restrained, 188-194 and 250-257, for the restrained control simulations of HLA-B*44:02 in the
peptide free state.
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S1.3.4 Interpretation of twist angle

For the angle of twist between peptide binding domain and the α3 two planes represented as discs in
Fig. S5A were defined through the centre of mass of the heavy chain by the Cα atoms of residues 118, 174
and 252 and the centre of mass of the α3 domain by residues 199, 209 and 260. The angle between the nor-
mal to these planes θ during the 420 ns combined simulations measures the twisting angle in degrees. This
angle was calculated using GROMACS utility g_sgangle. The range of this twisting angle for each HLA-B*44
molecule is shown in Figure 1F of the main text. Joint probability densities for the F-pocket distance defined
in Fig. S4A and the domain-domain twisting were then calculated using MATLAB™ as plotted in Fig. S5C-E.
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Figure S5: HLA-B*44 joint twist probability densities
A. The twist angle was defined by two planes represented as discs here were defined through the centre of mass of the
heavy chain by the Cα atoms of residues 118, 174 and 252 and the centre of mass of the α3 domain by residues 199,
209 and 260. The angle between the normal to these planes θ during the 420 ns combined simulations measures the
twisting angle between the peptide binding domain & the α3 domain. The angle was calculated using GROMACS utility
g_sgangle. B. Coloured blue on the structure of MHC I are the restrained regions indicated in blue were 220-227 and
controls of 188-194 and 250-257. C-E. The MATLAB™ hist3 utility was used to create a bivariate histogram from which
the probability density function is calculated and plotted for the distance change across the F-pocket of the peptide
binding groove against the twisting angle between the peptide binding domain & α3 domain.
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S2 Kinetic modelling of HLA-B*44 molecules

S2.1 Candidate models

S2.1.1 One conformation model

Previously, we constructed a model of MHC class I that could describe the time-dependent optimisation of
peptide cargo (19). Emanating from this work was the prediction that HLA-B molecules vary in their intrin-
sic ability to load high affinity peptides, which influences the extent to which tapasin confers an additional
optimisation benefit via skewing the competition between tapasin binding and peptide binding.

In this study, we sought to determine whether this model could be extended to incorporate a confor-
mational intermediate, and understand more specifically how peptide loading might be altered in dif-
ferent HLA-B molecules. Before defining the two conformations models, we introduce the original one-
conformation model, detailing some alterations that were made and propagated to the two-conformations
models.

1. As peptide supply and turnover is much faster than the other kinetics in the system, we assume that
the concentration of peptide is in equilibrium. i.e. [Pi] ≡ Pi.

2. After collecting temporally resolved data for the three HLA-B molecules investigated herein, we
noticed that the abundance of recoverable radioactive molecules sometimes increased between the
data-points at 15 minutes and 30 minutes after the termination of radio-labelling. Therefore, on this
timescale, some process must occur that changes MHC I molecules from an immature state to a mature
state (in terms of its recognition by antibody). This could be the effect of β2m binding, calnexin unbind-
ing, both, or neither. To account for the effect (which could be explored in detail in another study), we
modelled this as a first order reaction in which unrecoverable molecules (Mu) transition into mature
molecules (M) with rate m, following endoplasmic reticulum (ER)entry of immature MHC I molecules
at rate gM.

3. Changing the vT reaction to reversible, with rate aT ,

Applying these two alterations to the original model gives rise to

∅
gT−⇀↽−
dT

T M
b·Pi−−⇀↽−−

ui
MPi MPi

e−→ EMPi

∅
gM−⇀↽−
dM

M TM
a·Pi−−⇀↽−−
q·ui

TMPi EMPi
ui−→ EM

T + M
bT−⇀↽−
uT

TM T + MPi
a−⇀↽−
vT T

TMPi EM dEM−−→ ∅

Assuming mass action, the corresponding ODEs are given by

d[Mu]

dt
= gM − [Mu](dM + m) (5a)

d[M]

dt
= m[Mu] + ∑

i
ui[MPi] + uT [TM]− (b ∑

i
Pi + bT [T] + dM)[M] (5b)

d[T]
dt

= gT + uT [TM] + vT ∑
i
[TMPi]− (bT [M] + aT [MPi] + dT)[T] (5c)

d[TM]

dt
= bT [M][T] + q ∑

i
ui[TMPi]− (uT + a ∑

i
Pi)[TM] (5d)

d[MPi]

dt
= b · Pi[M] + vT [TMPi]− (ui + aT [T] + e)[MPi] (5e)

d[TMPi]

dt
= a · Pi[TM] + aT [T][MPi]− (qui + vT)[TMPi] (5f)

d[EMPi]

dt
= e[MPi]− ui[MePi] (5g)

d[EM]

dt
= ∑

i
ui[MePi]− dEM[Me] (5h)
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Solving the system at steady state, with aT = 0, leads to the following expression for the populations of
egressed peptide-MHC I complexes, as previously derived (19)

[EMPi]
∗ =

1
ui

e
ui + e

(b[M]∗ +
x

ui + x
a[TM]∗)Pi (6)

S2.1.2 Two-conformations (unbinding) model

To incorporate the possibility of a conformational change that alters peptide binding and unbinding, we
first proposed a model that extends the one-conformation model simply by using two conformational states
for all MHC I molecules (Fig. 1B and S6). These are distinguished as molecules that are able to load peptide
(“open”) and those that are not able to load peptide (i.e. “closed”). Transitions between open and closed
states proceed by opening rates o and oe for peptide-bound and empty molecules respectively, and closing
rates c and cT for tapasin-free and tapasin-bound molecules respectively. Additionally, we assumed that
MHC I molecules transition to the closed state (Mc) immediately following maturation from the state Mu.
As we explicitly model a maturation process during which time no peptide binding can occur, we felt that
this assumption would lead to very minor differences to the alternative assumption of Mu → Mo. As for
the one-conformation model, we allowed tapasin to enhance peptide dissociation by a factor q.

The underlying reactions for the two-conformations (unbinding) model are given by (see Fig. S6a for a
graphical depiction)

∅
gT−⇀↽−
dT

T ∅
gM−⇀↽−
dM

Mu McPi
e−→ EMcPi

Mu
m−⇀↽− Mc Mc

c−⇀↽−
oe

Mo MoPi
e−→ EMoPi

Mo, Mc
dM−→ ∅ T + Mc

bT−⇀↽−
uT

TMc EMcPi
c−⇀↽−
o

EMoPi

T + Mo
bT−⇀↽−
uT

TMo TMc
cT−⇀↽−
oe

TMo EMoPi
ui−→ EMo

Mo
b·Pi−−⇀↽−−

ui
MoPi TMo

b·Pi−−⇀↽−−
q.ui

TMoPi EMo
dEM−−→ ∅

MoPi
o−⇀↽−
c

McPi TMoPi
o−⇀↽−
cT

TMcPi

T + MoPi
a−⇀↽−
vT T

TMoPi T + McPi
a−⇀↽−
vT T

TMcPi

where the egression of open peptide-bound MHC I molecules (MoPi) is coloured red to indicate its inclusion
is to be decided upon. Assuming mass action kinetics, we can write down the corresponding ODEs as
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Figure S6: Two-conformation models of MHC class I peptide loading. (A,B) Graphical depiction of two-
conformations models, where (A) the unbinding rate of MoPi, or (B) the opening rate of McPi, is the peptide-dependent
reaction. Each shape in the model represents a molecular species and each box represents a reaction, where inbound
edges represent reactants and outbound edges represent products. Boxes are labelled with corresponding reaction rates,
where a single rate denotes an irreversible reaction and two rates denote a reversible reaction, with the rate of the for-
ward reaction indicated on top. (C) The theoretical effect of tapasin on peptide dissociation is plotted, based on the
analysis in Section S2.1. For the two-conformations (unbinding) model, the apparent dissociation was calculated over a
range of ui according to equations 8c and 8d with c = 10−2, cT = 1, o = 10−4 and q = 1000. For the two-conformations
(opening) model, the apparent dissociation was calculated over a range of oi according to equations 10c and 10d with
c = 10−2, cT = 1, u = 10−2 and q = 1000. (D) Sensitivity analysis of the two-conformations (opening) model with allele-
specific closing. The log-likelihood was computed for parametric deviations from the maximum likelihood parameter
set. In each case, a single parameter was varied over 4 orders of magnitude. The parameters analyzed are grouped as
(i) non-tapasin-associated, and (ii) tapasin-associated. As the parameters c and o are multi-valued (allele-specific and
peptide-specific respectively), the results are indicative of changing all values equivalently. (iii) The flux through differ-
ent pathways in the model was analyzed by setting equal to zero the parameters of tapasin binding to and unbinding
from MHC/pMHC molecules.
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d[Mu]

dt
= gM − [Mu] (dM + m) (7a)

d[Mc]

dt
= m[Mu] + c[Mo] + uT [TMc]− [Mc] (dM + oe + bT [T]) (7b)

d[Mo]

dt
= uT [TMo] + ∑

i
ui[MoPi] + oe[Mc]− [Mo]

(
dM + b ∑

i
[Pi] + c + bT [T]

)
(7c)

d[T]
dt

= gT + uT [TMc] + uT [TMo] + vT ∑
i
[TMoPi] + vT ∑

i
[TMcPi] . . .

− [T]

(
dT + bT [Mc] + bT [Mo] + aT ∑

i
[MoPi] + aT ∑

i
[McPi]

)
(7d)

d[TMc]

dt
= bT [T][Mc] + cT [TMo]− [TMc] (uT + q · oe) (7e)

d[TMo]

dt
= q · oe[TMc] + bT [T][Mo] + q ∑

i
ui[TMoPi]− [TMo]

(
cT + uT + b ∑

i
[Pi]

)
(7f)

d[McPi]

dt
= c[MoPi] + vT [TMcPi]− [McPi] (o + aT [T] + e) (7g)

d[MoPi]

dt
= b[Mo][Pi] + o[McPi] + vT [TMoPi]− [MoPi] (ui + c + aT [T] + e) (7h)

d[TMcPi]

dt
= cT [TMoPi] + aT [T][McPi]− [TMcPi] (o + vT) (7i)

d[TMoPi]

dt
= b[TMo][Pi] + o[TMcPi] + aT [T][MoPi]− [TMoPi] (q · ui + cT + vT) (7j)

d[EMcPi]

dt
= e[McPi] + c[EMoPi]− o[EMcPi] (7k)

d[EMoPi]

dt
= e[MoPi] + o[EMcPi]− [EMoPi] (c + ui) (7l)

d[EMo]

dt
= ∑

i
ui[EMoPi]− dEM[EMo] (7m)

Relationship to the one-conformation model

In order to determine the consequences of the additional conformational state, we derive the one-conformation
model from these equations. Intuition suggests that the one-conformation model is approximately equiva-
lent to the closing and opening rates being infinitely fast. Therefore, we apply the following substitutions:

[Mc] =
c
oe
[Mo]

[TMc] =
cT
oe

[TMo]

[McPi] =
c
o
[MoPi]

[TMcPi] =
cT
o
[TMoPi]
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By also defining [M] = [Mc] + [Mo] =
c+oe

c [Mo], [TM] = [TMc] + [TMo] =
cT+oe

cT
[TMo], etc., the system can

be written as

d[T]
dt

= gT + uT [TM] + vT ∑
i
[TMPi] +−[T]

(
dT + bT [M] + aT ∑

i
[MPi]

)
d[Mu]

dt
= gM − [Mu] (dM + m)

d[M]

dt
= m[Mu] + uT [TM] +

o
c + o ∑

i
ui[MPi]− [M]

(
dM + bT [T] +

oe

c + oe
· b ∑

i
Pi

)
d[TM]

dt
= bT [T][M] +

o
cT + o

q ∑
i

ui[TMPi]− [TM]

(
uT +

oe

cT + oe
· b ∑

i
Pi

)
d[MPi]

dt
=

oe

c + oe
· b[M]Pi + vT [TMPi]− [MPi]

(
o

c + o
· ui + aT [T] + e

)
d[TMPi]

dt
=

oe

cT + oe
· b[TM]Pi + aT [T][MPi]− [TMPi]

(
o

cT + o
· q · ui + vT

)
d[EMPi]

dt
= e[MPi]−

o
c + o

· ui[EMoPi]

d[EM]

dt
=

o
c + o

·∑
i

ui[EMoPi]− dEM[EM]

which is precisely equivalent to the one-conformation model with

b→ oe

c + oe
· b = b̂ (8a)

a→ oe

cT + oe
· b = â (8b)

ui →
o

c + o
· ui (8c)

q · ui →
o

cT + o
· q · ui = q̂ · ui (8d)

By observing these relationships, we can interpret the tapasin enhancement of the peptide on-rate as

ar =
â
b̂
=

c + oe

cT + oe

and the Tapasin enhancement of the peptide off-rate as

q̂ =
c + o

cT + o
· q

This enables us to re-interpret the filter principle in the two-conformations model, assuming that closing
and opening occur on a faster timescale than peptide binding/unbinding (note that for comparison with
the one-conformation model, we assume aT = 0 in the following). This gives

[EMPi]
∗ =

b
ui
· e

o
c + o

· ui + e

 oe

c + oe
· [M]∗ +

oe

cT + oe
· vT

o
cT + o

· q · ui + vT

· [TM]∗

 · Pi

∝
1
ui
· e′

ui + e′
·
(
[M]∗ + ar ·

x
x + ui

· [TM]∗
)
[Pi]
∗ (9)

where e′ = e · c+o
o and x = vT

q ·
cT+o

o . Note that this equation has the same form as for the one-conformation
model (6), so the filtering relation is unchanged for the two-conformations (unbinding) model.
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S2.1.3 Two-conformations (opening) model

Based on an argument related to thermodynamics, it is more likely that the peptide-dependent step of
peptide-MHC I unbinding is the rate at which a “closed” molecule becomes “open”. i.e. rate o in the two-
conformations model. This argument rests on the observation that the extent of the interactions a peptide
makes with a MHC I molecule would be greater in a closed state than an open MHC I state and therefore
the number and quality of these interactions would determine the opening rate of MHC I in a peptide-
dependent manner. Therefore, we propose a variation to the two-conformations model that is as close as
possible to the other models, except that the rate of opening of a peptide-bound MHC I molecule is peptide-
dependent, while the rate of peptide-MHC I disassociation is homogeneously assigned. We propose that
the effects of tapasin are to increase peptide unloading by increasing the peptide-dependent opening rate
(oi → q · oi), and to modify the rate of closing (c→ cT), though this time having no effect on peptide binding
(rate b) and unbinding (rate u).

The underlying reactions for the two-conformations (opening) model are given by (see Fig. S6b for a
graphical representation)

∅
gT−⇀↽−
dT

T ∅
gM−⇀↽−
dM

Mu McPi
e−→ EMcPi

Mu
m−⇀↽− Mc Mc

q·oe−−⇀↽−−
c

Mo MoPi
e−→ EMoPi

Mo, Mc
dM−→ ∅ T + Mc

bT−⇀↽−
uT

TMc EMcPi
oi−⇀↽−
c

EMoPi

T + Mo
bT−⇀↽−
uT

TMo TMc
oT−⇀↽−
cT

TMo EMoPi
u−→ EMo

Mo
b·Pi−−⇀↽−−

u
MoPi TMo + Pi

b·Pi−−⇀↽−−
u

TMoPi EMo
dEM−−→ ∅

MoPi
c−⇀↽−
oi

McPi TMoPi
cT−−⇀↽−−
q·oi

TMcPi

T + MoPi
aT−⇀↽−
vT

TMoPi T + McPi
aT−⇀↽−
vT

TMcPi

Using exactly the same procedure as above, we obtain the one-conformation model with

b→ oe

c + oe
· b = b̂ (10a)

a→ q · oe

cT + q · oe
· b = â (10b)

ui →
oi

c + oi
· u (10c)

q · ui →
q · oi

cT + q · oi
· u (10d)

Therefore, the tapasin enhancement of the peptide on-rate remains the same as for the two-conformations
(unbinding) model as

ar =
â
b̂
=

c + oe

cT + q · oe

but the tapasin enhancement of the peptide off-rate becomes peptide-specific as

qi =
c + oi
cT
q + oi

=
c + oi

x2 + oi

We now derive an expression equivalent to (6) and (9) but cast in terms of the peptide-specific opening
rate oi to quantify the filtering achieved by this mechanism. We obtain

[EMPi]
∗ =

oi + c
u · oi

· e
u·oi
oi+c + e

·
(

oe

c + oe
· b · [M]∗ +

q · oe

cT + q · oe
· b · vT

vT +
q·oi

cT+q·oi
· u

[TM]∗
)

Pi

∝
oi + c

oi
· x1 (oi + c)

oi + c · x1

(
[M]∗ + ar ·

ρ · oi + ρ · x2
oi + ρ · x2

· [TM]∗
)
· Pi (11)

where x1 = e
u+e , ρ = vT

vT+u (< 1) and x2 = cT
q .
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Using the relationships between the unbinding, closing and opening rates derived in this document, we
can plot representative curves that compare the effective dissociation in each model (Fig. S6C). The two-
conformations (unbinding) model exhibits the behaviour assumed in the one-conformation model, with
tapasin increasing peptide unbinding by a constant factor. A more complex relationship was observed with
the two-conformations (opening) model, with tapasin having no effect for higher values of oi (and therefore
less stable peptides). Given this fundamental difference between the two variants of the two-conformations
model, it would not be unexpected that different dynamical behaviours could be observed. Therefore, we
reasoned that the models would differ in their ability to reproduce experimental data when attempting to
fit the underlying model parameters.

S2.2 Simulation of thermostability and endoglycosidase H resistance

All simulations were performed as done previously (19). The one-conformation and two-conformations (un-
binding) models used representative high, medium and low affinity peptides, instantiated as three different
peptide off-rates ui. For the two-conformations (opening) model, representative peptides were instantiated
with peptides for which peptide-MHC I opening oi differed. To relate the simulations to the experimental
measurements, 50◦C data were compared with the high affinity peptide alone, 37◦C data were compared
with the sum of the high and medium affinity peptide-MHC I complexes, while 4◦C data were compared
with the total quantity of MHC I molecules in the system.

For endoH resistance, we considered the total quantity of egressed MHC I molecules to be resistant, and
the intra-ER MHC I molecules to be susceptible. Therefore, to calculate % endoH resistance, we used the
formula

endoH = 100 · resistant
susceptible + resistant

S2.3 Bayesian parameter inference for the kinetic models

To assess the plausibility of a model of a specific circuit, we first determine optimal parameter values using
probabilistic inference techniques, similar to the technique used previously (19). In particular, we seek to
approximate the likelihood of parameters taking on specific values, given a model hypothesis and some
observation data. i.e. we attempt to approximate the posterior density Pr(θ|H, D), where θ is the vector
of parameters to be inferred, H is the model hypothesis, and D is the set of experimental data used for
inference. The posterior distribution is related to an evidence or likelihood function Pr(D|θ, H) according
to Bayes’ rule:

Pr(θ|H, D) =
Pr(D|θ, H)Pr(θ|H)

Pr(D)

We obtained approximations of the posterior distributions using the Filzbach software, available from
the author’s website (http://research.microsoft.com/science/tools), which uses a Metropolis-Hastings (MH)
Markov Chain Monte Carlo (MCMC) sampling routine. MCMC is a stochastic search strategy that forms a
Markov chain of proposal parameter vectors, moving to new proposal vectors based on the ratio of the like-
lihoods of the proposal and previous points. By biasing the stochastic search in parameter regions of high
probability mass, we converge on the true joint posterior distribution of the parameters more efficiently
than would be possible with a purely random search.

To define the likelihood of a parameter vector, we assumed that the experimental measurements were
noisy samples drawn independently from Gaussian distributions centered on the model predictions of the
fluorescence. Therefore, in the optimal case that the model precisely describes the underlying biological
behaviour, deviations of the measurements result purely from experimental error. Consequently, a data
point yi is distributed as yk ∼ N(xk, σ2), where xk is the model prediction at t = tk and σ2 is the variance
of experimental error. We assume that the variance of experimental error is proportional to the measured
fluorescence signal, as quantified in Figs. 2B, 5B (i.e. σ = α

√
yk for some α). Therefore, the likelihood

function is formed as the product of the probabilities of each data-point
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Table S2: The maximum likelihood parameter set for the two-conformations (opening) model with allele parameter
c.

Process Parameter Value

MHC I supply gM 100.0 molecules s−1

MHC I degradation in the ER dM 1.0534× 10−7 s−1

MHC I degradation at the cell surface dEM 5.8424× 10−4 s−1

MHC I maturation m 0.0021s−1

Peptide binding b 1.4864× 10−6 molecules−1 s−1

Peptide unbinding u 1.1586 s−1

Peptide availability (low) P1 2.26× 105 molecules s−1

Peptide availability (medium) P2 4.2473× 105 molecules s−1

Peptide availability (high) P3 1.7191× 105 molecules s−1

MHC I closing (HLA-B*44:02) c02 1.3853× 10−6 s−1

MHC I closing (HLA-B*44:05) c05 0.009 s−1

MHC I closing (HLA-B*44:05W147A) c05.W147A 1.4905× 10−4 s−1

MHC I opening (peptide-free) oe 0.3615 s−1

MHC I opening (low affinity peptide) o1 1.5392× 10−4 s−1

MHC I opening (medium affinity peptide) o2 1.4248× 10−4 s−1

MHC I opening (high affinity peptide) o3 1.9211× 10−5 s−1

Egression e 3.4407× 10−4 s−1

Tapasin supply gT 100.0 molecules s−1

Tapasin degradation dT 1.096× 10−4 s−1

Tapasin enhancement of opening q 6.3616× 103

Tapasin binding to peptide-free MHC I bT 4.9425× 10−5 molecules−1 s−1

Tapasin unbinding from peptide-free MHC I uT 0.0061 s−1

Tapasin binding to peptide-bound MHC I aT 1.0164× 10−8 molecules−1 s−1

Tapasin unbinding from peptide-bound MHC I vT 0.6079 s−1

MHC I closing (tapasin-bound) cT 0.8895 s−1

Noise parameter for thermostability data α1 0.1046
Noise parameter for endoH data α2 17.3255

L(θ) = Pr(D|θ) =
N

∏
k=1

1
α
√

2πyk
· e
− (yk−xk)

2

α2yk

with α left as a parameter to be inferred.
As the model simulates the concentration of peptide-MHC I complexes and not fluorescence directly,

we made the simplifying assumption that there is a linear relationship between the two. Therefore, we
compared the simulated output to the data with a scale factor, which was calculated using linear regression.

We determined the extent to which each model hypothesis (one-conformation, two-conformations (un-
binding) and two-conformations (opening)) could reproduce experiments measuring time-dependent opti-
misation via thermostability (Fig. 6A) and cell surface transit via endoglycosidase H resistance (Fig. 6B). As
before (19), we examined a variety of hypotheses for which parameters could be nominated as allele-specific,
then used our parameter inference procedure to find optimal values. We then calculated the Bayesian Infor-
mation Criterion (BIC), which attempts to find a compromise between having as few variable parameters as
possible while minimising the deviation between model simulation and experimental observation. The BIC
is defined as

BIC := −2 log L (θ∗) + k ln (n)

where θ∗ is the maximum likelihood estimate of the parameters (i.e the vector that maximises L(θ)), k is the
number of variable parameters and n is the number of experimental observations.
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Figure S7: Comparison of best one-conformation model with experimental data. The one-conformation model with
allele-specific b showed the best performance of all one-conformation models. The simulations and measurements are
equivalent to Fig. 7B–D.
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