Table of contents	Pages
Natural Product Characterization General Experimental Procedures	S2
Biological Material Collection and Identification	S2
Extraction and Isolation	S2-S3
Figure S1. Comparison of ¹ H spectrum of the natural cocosolide (1) from Cocos Lagoon and Tanguisson reef flat	S4
Figure S2. Comparison of ¹³ C NMR spectrum of the natural cocosolide (1) from Cocos Lagoon and Tanguisson reef flat	S5
¹ H, ¹³ C, COSY, edited HSQC, HMBC and NOESY NMR spectra of cocosolide (1)	S6-S11
Base Hydrolysis of Cocosolide (1)	S12
Methylation of Cocosolide Seco-acid (2)	S12
Preparation of (<i>R</i>)-MTPA and (<i>S</i>)-MTPA	S12
Single-crystal X-ray Structure Determination	S13
X-Ray Crystallographic Data, Table S1-S5	S14-S32
Experimental procedures for all synthetic compounds	S32-S48
Figure S3. Comparison of ¹ H spectrum of the natural cocosolide (1) (from Cocos Lagoon) and the synthetic cocosolide (1)	S49
Figure S4. Comparison of 13 C NMR spectrum of the natural cocosolide (1) (from Cocos Lagoon) and the synthetic cocosolide (1)	S50
¹ H and ¹³ C NMR spectra of all synthetic compounds	S51-S96
Supplementary References	S97

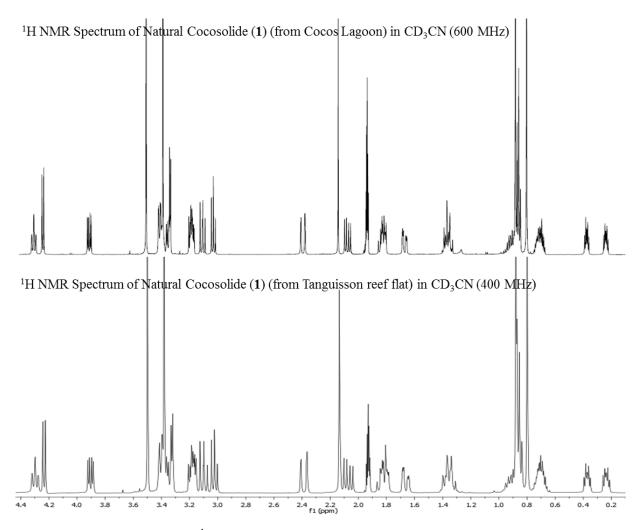
Natural Product Characterization General Experimental Procedures. The melting point measured using a Gallenkamp melting point apparatus is uncorrected. The optical rotations were recorded on a Perkin Elmer model 343 polarimeter. UV spectrophotometric data was acquired on a Hitachi U-3010 spectrophotometer. IR spectroscopic data were obtained on a Perkin Elmer Spectrum 100 FT-IR spectrometer. NMR data (of cocosolide collected from Cocos Lagoon) were collected on a JEOL ECA-600 spectrometer operating at 600 MHz for ¹H and 150 MHz for ¹³C. The edited-HSQC experiment was optimized for ${}^{1}J_{CH} = 140$ Hz and the HMBC spectrum was optimized for ${}^{2,3}J_{CH} = 8$ Hz. ¹H NMR chemical shifts (referenced to residual CH₃CN observed at δ 1.93) were assigned using a combination of data from 2D DQF COSY and multiplicity-edited HSOC experiments. Similarly, ¹³C NMR chemical shifts (referenced to CD₃CN observed at δ 118.2) were assigned on the basis of multiplicity-edited HSQC experiments. NMR data (of cocosolide collected from Tanguisson reef flat) were collected on a Varian Mercury-Plus-400 spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C. The HRMS data was obtained using an Agilent 6210 LC-TOF mass spectrometer equipped with an APCI/ESI multimode ion source detector at the Mass Spectrometer Facility at the University of California, Riverside, California. Silica gel 60 (EMD Chemicals, Inc. 230-400 mesh) and Varian BondElut octadecyl (C_{18}) were used for column chromatography. All solvents used were of HPLC grade (Fisher Scientific).

Biological Material Collection and Identification. The initial sample of cyanobacterial soft golden puffballs of cyanobacterium *Symploca* sp. was collected in December 1999 from the reef near Cocos Island, Guam. The sample was identified by one of us (VJP) based on morphological characteristics of the genus and the voucher specimen (VP-ECO 22) is maintained at the Smithsonian Marine Station, Fort Pierce, FL. A recollection at the same location was carried out in October 2000.

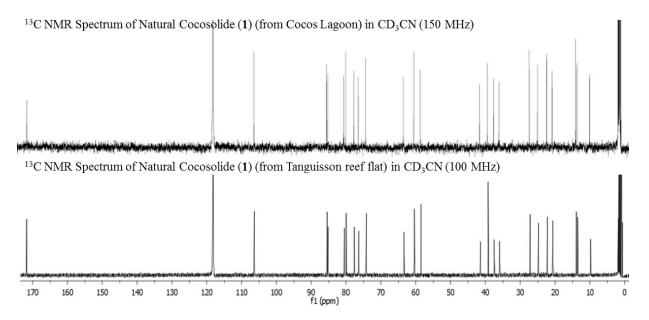
The sample of *Symploca* sp. NIH 393 was collected in September 6, 2001 from 18 m depth from a Reef wall north of Pago, Guam. The sample was identified on morphological characteristics of the genus and the voucher specimen is maintained at the Smithsonian Marine Station, Fort Pierce, FL.

Another sample of golden mat-forming *Symploca* sp. VPG 14-1 was collected from Tanguisson reef flat, Guam, on May 27, 2014. Two samples of golden puffballs VPG14-35 and VPG14-47 were collected from Piti Bomb Holes, Guam on May 31, 2014 and from Finger Reef, Guam on June 3, 2014. The samples were identified on morphological characteristics of the genus and the voucher specimens are maintained at the Smithsonian Marine Station, Fort Pierce, FL.

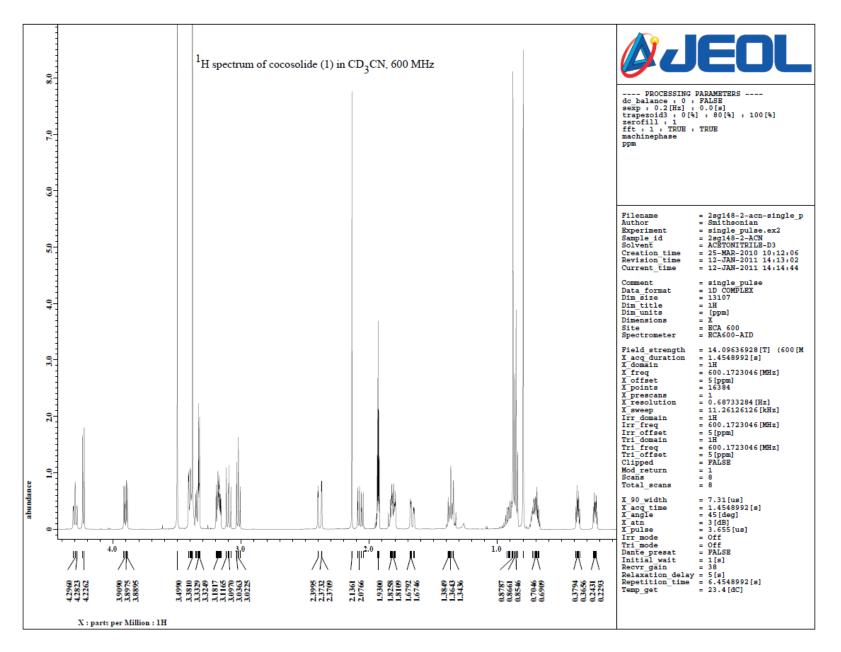
Extraction and Isolation. The freeze dried material from the 1999 collection from Cocos Lagoon was extracted with a mixture of CH_2Cl_2 –MeOH (1:1) and then with aqueous MeOH (1:1). The combined extract (9.34 g) was subsequently partitioned between *n*-BuOH and H₂O. Concentration of these extracts furnished 0.440 g of *n*-BuOH-soluble fraction and 8.8 g H₂O-soluble material. The *n*-BuOH-soluble fraction (0.440 g) was chromatographed on a column of SiO₂ (20 g) using a hexanes–EtOAc step gradient system followed by an EtOAc–MeOH step gradient to give six sub-fractions. The sub-fraction 3 (30 mg), eluting with EtOAc was further chromatographed on a column of SiO₂ (5 g) using a hexanes–EtOAc system to give two sub-fractions. The sub-fraction 2 (14 mg) was further purified by reversed-phase HPLC (semi-prep

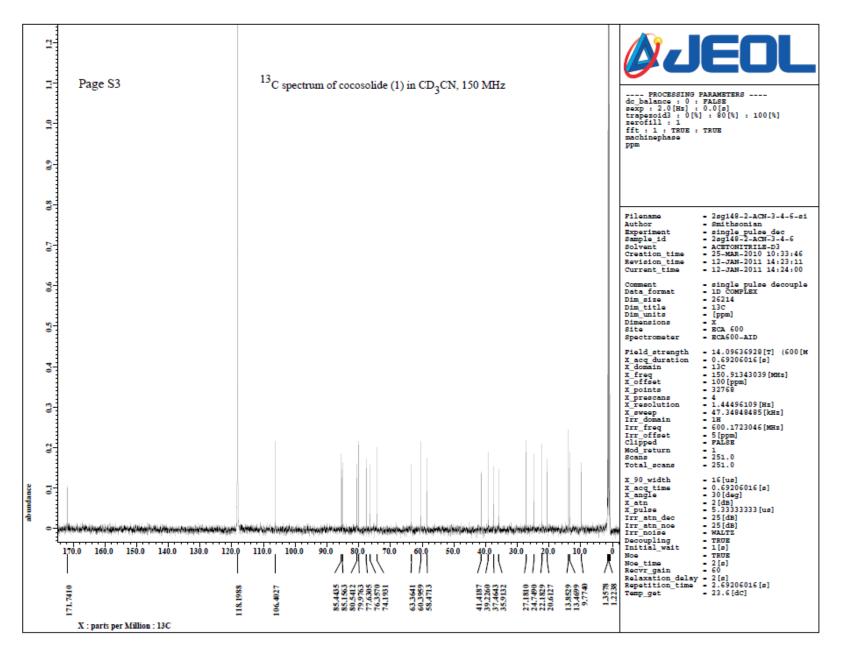

 10×250 mm, 5 μm , RP-18, flow 3.0 mL/min) using 10% H₂O–MeOH to give 8.0 mg of cocosolide (1).

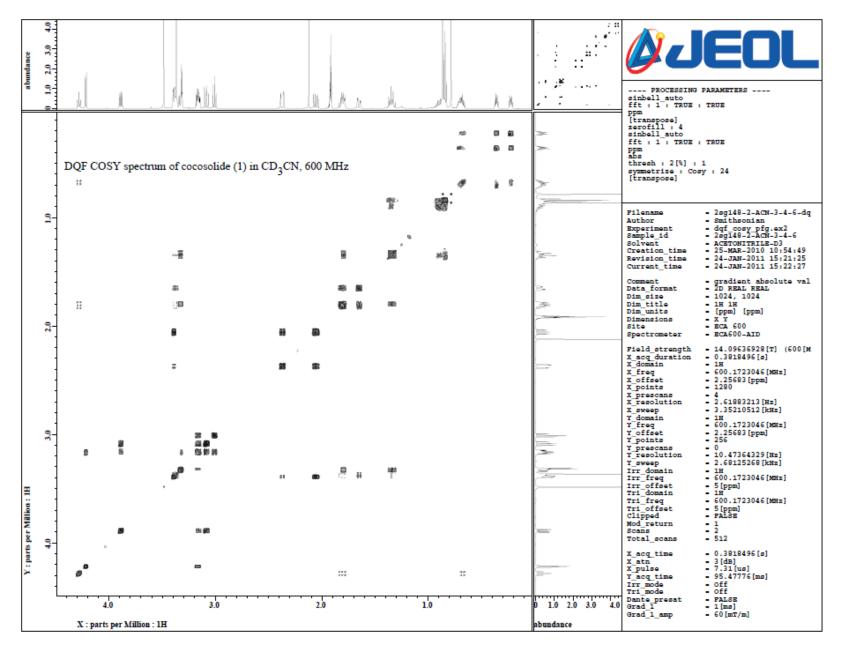
The recollection from Cocos Lagoon provided a lipophilic extract (6.5 g) that was subjected to same purification procedure to give 5.0 mg of cocosolide (1). Subsequent recollections of the same cyanobacterium furnished additional 10 mg of cocosolide (1).

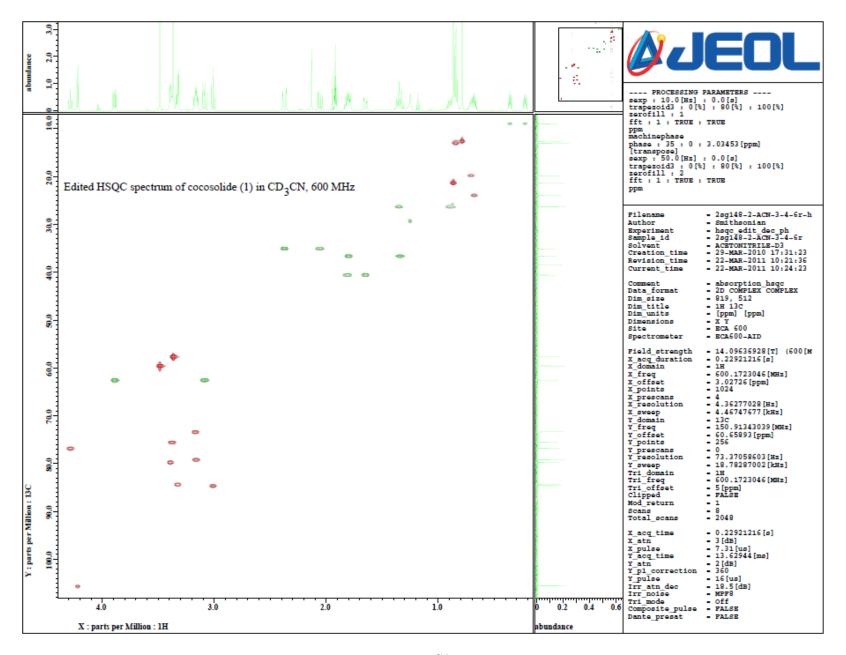

The freeze dried material derived from *Symploca* sp. NIH 393 from Pago was extracted with a mixture of EtOAc–MeOH (1:1) and then with aqueous MeOH (1:1) to give 2.3 g and 4.6 g of extracts, respectively. The EtOAc–MeOH extract was partitioned between EtOAc and H₂O to give 0.110 g of EtOAc-soluble fraction. This fraction was chromatographed on a column of SiO₂ (20 g) using a hexanes–EtOAc step gradient system followed by an EtOAc–MeOH- step gradient to give four sub-fractions. The sub-fraction 2 (0.011 g), eluting with EtOAc, was pushed through a C-18 SepPak using H₂O–MeOH gradient followed by MeOH to give 4 sub-fractions. The first sub-fraction eluting with 15% H₂O–MeOH was separated again using a C-18 SepPak with 20% H₂O–MeOH and 15% H₂O–MeOH, and the latter fraction furnished pure cocosolide (1) 2.2 mg.

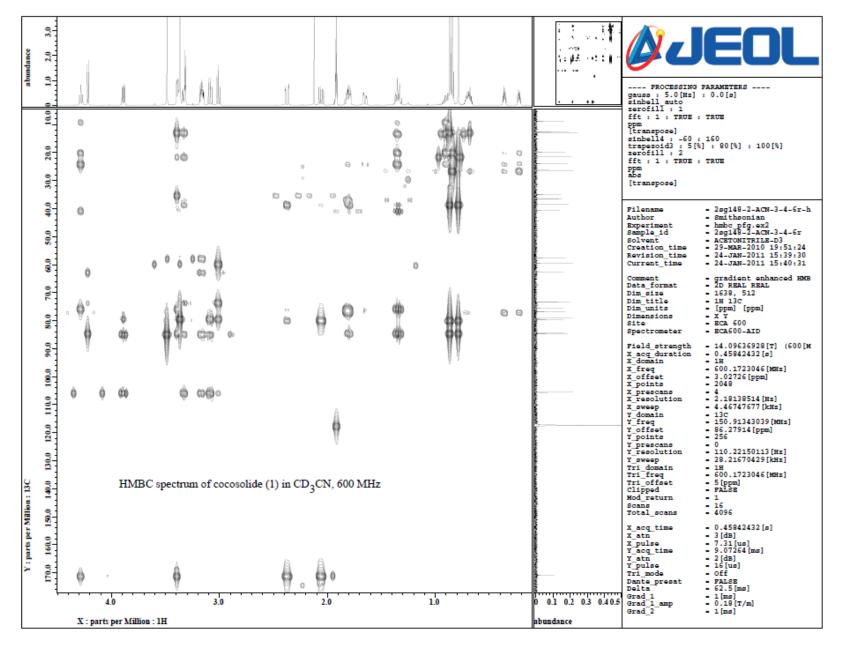
For the Tanguisson reef flat collection VPG 14-1, the freeze-dried material (207.25 g) was extracted twice with EtOAc-MeOH (1:1) to yield the nonpolar extract (8.28 g). This was partitioned between hexanes and 20% aqueous MeOH. The latter was concentrated under reduced pressure and further partitioned between *n*-BuOH and H₂O. The *n*-BuOH soluble fraction was concentrated to dryness (212.9 mg) and chromatographed on a column of Si gel eluting first with CH₂Cl₂, followed by increasing concentrations of *i*-PrOH; after 100% *i*-PrOH, increasing gradients of MeOH were used. The 6% *i*-PrOH fraction (29.1 mg) was subjected to a C₁₈ SPE eluting with 100% MeOH for sample pre-cleaning and the eluted sample was dried under N₂. This was further purified by semipreparative reversed-phase HPLC (column, Phenomenex Synergi 4 μ Hydro-RP 80 Å, 250 × 10 mm, 4 μ m; flow rate, 2.0 mL/min; UV detection at 200 nm and 220 nm) using a linear gradient of MeCN-H₂O (50-100% MeCN in 30 min, 100% MeCN for 10 min, and then 100%-50% MeCN in 10 min) to yield semipure cocosolide (t_R 28.1 min, 14.40 mg). The final purification of the semipure cocosolide was achieved by using the same chromatographic condition with a different linear gradient of MeCN-H₂O (50-83% MeCN in 60 min, 100% MeCN for 10 min) to yield cocosolide (t_R 51.3 min, 13.1 mg) as a colorless, amorphous solid.

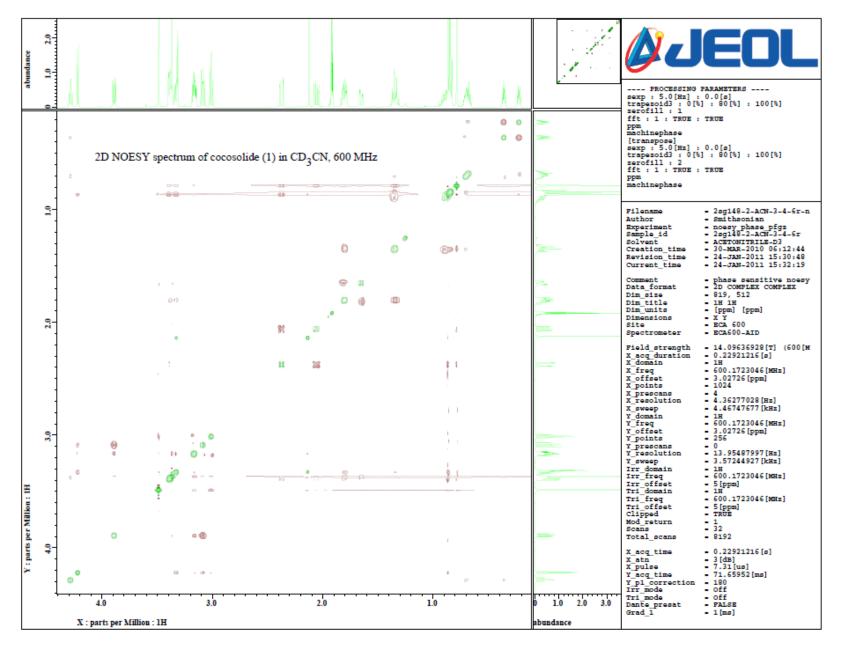

The freeze dried samples 8.0 g of VPG14-35 and 1.2 g of VPG14-47 were extracted separately with a mixture of EtOAc–MeOH (1:1) and then with MeOH. The polar and the non-polar extracts from each sample were combined to give 135 mg and 64 mg of extracts, respectively. The ¹H NMR spectra of these extracts indicated the presence of the characteristic proton signals and the notable cyclopropyl signals present in cocosolide (1) and thus identified the presence of cocosolide in both collections.




Figure S1. Comparison of ¹H spectrum of natural cocosolide (1) from Cocos Lagoon and Tanguisson reef flat.




Figure S2. Comparison of 13 C spectrum of natural cocosolide (1) from Cocos Lagoon and Tanguisson reef flat.



Base Hydrolysis of Cocosolide (1): Compound 1 (2.0 mg) was dissolved in 1.0 mL of EtOH and treated 0.1 mL of 10% aqueous NaOH solution. The mixture was stirred for 1 hour at 65 °C. The EtOH was evaporated and neutralized with dilute HCl at 5 °C. Extraction with CH₂Cl₂ gave 2.0 mg of cocosolide seco-acid (2), isolated as white solid: $[\alpha]^{25}D - 40.5$ (c 0.13, MeOH); IR (film) v_{max} 3464, 2959, 2932, 1718, 1389, 1259, 1164, 1096, 1076, 999, 955 cm⁻¹; ¹H NMR (CD₃CN) δ 4.69 (1H, br s OH-9), 4.23 (1H, d, J = 7.6 Hz, H-17), 3.90 (1H, dd, J = 11.0, 4.8 Hz, Ha-21), 3.56 (1H, m, H-7), 3.50 (3H, s, H-22), 3.45 (1H, dd, J = 8.2, 2.0 Hz, 3-H), 3.37 (3H, s, H-23), 3.35 (1H, dd, J = 11.4, 4.8 Hz, H-5), 3.18 (1H, m, H-20), 3.17 (1H, m, H-18), 3.10 (1H, dd, J = 11.0, 9.6 Hz, Hb-21), 3.02 (1H, t, J = 8.3 Hz, H-19), 2.99 (1H, m, H-9), 2.46 (1H, dd, J = 17.2, 2.0 Hz, H-2a), 2.27 (1H, dd, J = 17.2, 8.2 Hz, H-2b), 1.80 (1H, ddd, J = 13.0, 4.8, 2.0 Hz, H-6a), 1.65 (1H, m, H-8a), 1.57 (1H, m, H-8b), 1.43 (1H, ddd, J = 13.0, 11.4, 11.0 Hz, H-6b), 1.20 (2H, m, H-12), 0.93 (3H, s, H-15), 0.93 (3H, t, J = 6.9 Hz, H-13), 0.82 (3H, s, H-16), 0.60 (1H, m, H-11), 0.50 (1H, m, H-10), 0.32 (1H, m, H-14a), 0.16 (1H, m, H-14b); ¹³C NMR (CD₃CN, * indicates these signals may be interchanged) &173.4 (C, C-1), 106.4 (CH, C-17), 85.5 (CH, C-19), 85.0 (CH, C-5), 81.2 (CH, C-3), 79.9 (CH, C-18), 76.1 (CH, C-7), 74.3* (CH, C-20), 74.2* (CH, C-9), 63.3 (CH₂, C-21), 60.3 (CH₃, C-22), 58.4 (CH₃, C-23), 43.7 (CH₂, C-8), 39.3 (C, C-4), 37.3 (CH₂, C-6), 35.3 (CH₂, C-2), 27.4 (CH₂, C-12), 25.7 (CH, C-10), 22.2 (CH₃, C-15), 19.0 (CH, C-11), 13.9 (CH₃, C-13), 13.4 (CH₃, C-16), 9.3 (CH₂, C-14); HRESI/APCIMS *m*/*z* 483.2588 [M + Na]⁺ (calcd for C₂₃H₄₀O₉Na. 483.2565).

Methylation of Cocosolide Seco-acid (2). Compound 2 (1.0 mg) was dissolved in 1.0 mL of MeOH and cooled to 4 °C. The cooled solution was treated with 50 µL of 2.0 M trimethylsilyl diazomethane in diethylether. Evaporation of MeOH and excess trimethylsilyl diazomethane gave 1.0 mg of cocosolide seco-ester (3), isolated as white, glassy solid: $[\alpha]^{25}$ –42.8 (c 0.17, MeOH); IR (film) v_{max} 3520, 2959, 1741, 1435, 1370, 1259, 1162, 1096, 1073, 991 cm⁻¹; ¹H NMR (CD₃CN) δ 4.23 (1H, d, J = 7.6 Hz, H-17), 3.90 (1H, dd, J = 11.0, 4.8 Hz, Ha-21), 3.59 (3H, s, H-24), 3.55 (1H, m, H-7), 3.50 (3H, s, H-22), 3.45 (1H, dd, J = 8.2, 2.0 Hz, 3-H), 3.37 (3H, s, H-23), 3.35 (1H, dd, J = 11.4, 4.8 Hz, H-5), 3.18 (1H, m, H-20), 3.17 (1H, m, H-18), 3.10 (1H, dd, J = 11.0, 9.6 Hz, Hb-21), 3.02 (1H, t, J = 8.3 Hz, H-19), 2.98 (1H, m, H-9), 2.87 (1H, d, J = 2.8 Hz, OH-9), 2.46 (1H, dd, J = 17.2, 2.0 Hz, H-2a), 2.27 (1H, dd, J = 17.2, 8.2 Hz, H-2b), 1.80 (1H, ddd, J = 13.0, 4.8, 2.0 Hz, H-6a), 1.63 (1H, m, H-8a), 1.55 (1H, m, H-8b), 1.43 (1H, ddd, J = 13.0, 11.4, 11.0 Hz, H-6b), 1.20 (2H, m, H-12), 0.93 (3H, s, H-15), 0.93 (3H, t, J = 6.9 Hz, H-13), 0.82 (3H, s, H-16), 0.58 (1H, m, H-11), 0.48 (1H, m, H-10), 0.30 (1H, m, H-14a), 0.16 (1H, m, H-14b); ¹³C NMR (CD₃CN, * indicates these signals may be interchanged) δ 173.3 (C, C-1), 106.4 (CH, C-17), 85.4 (CH, C-19), 84.9 (CH, C-5), 81.4 (CH, C-3), 79.9 (CH, C-18), 75.9 (CH, C-7), 74.1* (CH, C-20), 73.9* (CH, C-9), 63.3 (CH₂, C-21), 60.3 (CH₃, C-22), 58.4 (CH₃, C-23), 52.0 (CH₃, C-24), 43.8 (CH₂, C-8), 39.3 (C, C-4), 37.3 (CH₂, C-6), 35.6 (CH₂, C-2), 27.4 (CH₂, C-12), 25.6 (CH, C-10), 22.2 (CH₃, C-15), 18.9 (CH, C-11), 13.9 (CH₃, C-13), 13.4 (CH₃, C-16), 9.2 (CH₂, C-14); HRESI/APCIMS m/z 497.2738 [M + Na]⁺ (calcd for C₂₄H₄₂O₉Na, 497.2721).

Preparation of (*R*)**-MTPA and** (*S*)**-MTPA Diesters of Seco-ester (3)**: Compound **3** (0.3 mg) was dissolved in CHCl₃ (20 μ L) and added pyridine (60 μ L) and a catalytic amount of 4-DMAP. The solution was treated with *S*-(–)-MTPA chloride (2.0 μ L) and stirred at room temperature for 24 hours. The reaction was terminated with the addition of MeOH (50 μ L) and the solvent was evaporated to give the (*R*)-MTPA diester of **3**. Similarly, the (*S*)-MTPA diester of **3** was prepared with *R*-(–)-MTPA chloride using the same procedure. Both esters were subjected to HPLC (semi-

prep 250×10 mm, 5 µm, SiO₂, flow 3.0 mL/min) using hexanes – 25% EtOAc to yield the pure (*R*)-MTPA diester of **3** (0.3 mg) and (*S*)-MTPA diesters of **3** (0.3 mg).

*R***-MTPA ester of 3**: ¹H NMR (CD₃CN) δ (only key resonances are listed) 1.912, 1.464 (2H, m, H-6), 3.567 (1H, m, H-7), 1.912. 1.807 (2H, m, H-8), 4.488 (H, m, H-9), 0.659 (H, m, H-10), 0.618 (H, m, H-11), 1.114, 1.023 (2H, m, H-12), 0.757 (3H, t, *J* = 6.9 Hz, H-13), 0.534, 0.348 (2H, m, H-14); HRESI/TOFMS *m*/*z* 929.3543 [M + Na]⁺ (calcd for C₄₄H₅₆F₆O₁₃Na, 929.3517).

S-MTPA ester of 3: ¹H NMR (CD₃CN) δ (only key resonances are listed) 1.717, 1.358 (2H, m, H-6), 3.289 (1H, m, H-7), 1.816. 1.740 (2H, m, H-8), 4.426 (H, m, H-9), 0.779 (H, m, H-10), 0.742 (H, m, H-11), 1.292, 1.116 (2H, m, H-12), 0.885 (3H, t, *J* = 6.9 Hz, H-13), 0.540, 0.370 (2H, m, H-14); HRESI/TOFMS *m*/*z* 929.3528 [M + Na]⁺ (calcd for C₄₄H₅₆F₆O₁₃Na, 929.3517).

Single-crystal X-ray Structure Determination: A Leica MZ 75 microscope was used to identify a suitable colorless multi-faceted crystal with very well defined faces with dimensions (max, intermediate, and min) 0.3 mm \times 0.2 mm \times 0.1 mm from a representative sample of crystals of the same habit. The crystal mounted on a nylon loop was then placed in a cold nitrogen stream (Oxford) maintained at 110 K. An APEXII BRUKER X-ray (three-circle) diffractometer was employed for crystal screening, unit cell determination, and data collection. The goniometer was controlled using the APEX2 software suite.¹ The sample was optically centered with the aid of a video camera such that no translations were observed as the crystal was rotated through all positions. The detector was set at 6.0 cm from the crystal sample. The X-ray radiation employed was generated from a Mo sealed X-ray tube ($K_{\alpha} = 0.70173$ Å with a potential of 40 kV and a current of 40 mA) fitted with a graphite monochromator in the parallel mode (175 mm collimator with 0.5 mm pinholes). Sixty data frames were taken at widths of 0.5° with an exposure time of 60 s. These reflections were used in the auto-indexing procedure to determine the unit cell. A suitable cell was found and refined by nonlinear least squares and Bravais lattice procedures. The unit cell was verified by examination of the h k l overlays on several frames of data. No super-cell or erroneous reflections were observed. After careful examination of the unit cell, a standard data collection procedure was initiated using omega scans. Each frame was exposed for 60 s and contrasted against a 60 s dark current exposure. The measurements are reported in Table S1 of Supporting Information. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2.¹ The integration method employed a three dimensional profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. The absorption correction program SADABS² was employed to correct the data for absorption effects. Systematic reflection conditions and statistical tests for the data suggested the space group $P2_1$. A solution was obtained readily using SHELXTL (SHELXS).³ All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms bound to carbon were placed in idealized positions $[C-H = 0.96 \text{ Å}, U_{iso}(H) = 1.2 \times U_{iso}(C)]$. The structure was refined (weighted least squares refinement on F^2) to convergence.³ X-seed was employed for the final data presentation and structure plots.⁴

Table S1. Crystal data and structure refinement for cocosolide (1)

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	Cocosolide C46 H76.25 O16.12 887.32 110(2) K 0.71073 Å Monoclinic P2(1) a = 14.201(5) Å b = 18.976(7) Å c = 18.547(7) Å	α = 90°. β = 102.985(5)°. γ = 90°.
Volume	4870(3) Å ³	
	4	
Density (calculated)	1.210 Mg/m ³ 0.090 mm ⁻¹	
Absorption coefficient F(000)	0.090 mm ⁻¹ 1925	
	0.30 x 0.18 x 0.10 mm ³	
Crystal size Theta range for data collection	1.82 to 28.69°.	
Index ranges	-19<=h<=18, -24<=k<=2	25, -24<=l<=24
Reflections collected	57028	,
Independent reflections	22990 [R(int) = 0.0523]	
Completeness to theta = 28.69°	94.5 %	
Absorption correction Max. and min. transmission	Semi-empirical from equ 0.9910 and 0.9734	iivalents
Refinement method Data / restraints / parameters	Full-matrix least-squares 22990 / 1 / 1148	s on F ²
Goodness-of-fit on F^2	1.006	
Final R indices [I>2sigma(I)]	R1 = 0.0494, wR2 = 0.08	
R indices (all data)	R1 = 0.0884, wR2 = 0.10	002
Absolute structure parameter	-0.2(4)	
Largest diff. peak and hole	0.260 and -0.200 e.Å ⁻³	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for cocosolide (1). U(eq) is defined as one third of the trace of the orthogonalized Uⁱj tensor

	Х	У	Z	U(eq)	
O(1A)	2059(1)	3450(1)	698(1)	28(1)	
O(2A)	4461(1)	4084(1)	1266(1)	38(1)	
O(3A)	5072(1)	2987(1)	1506(1)	27(1)	
O(4A)	4599(1)	2851(1)	3015(1)	28(1)	
O(5A)	3102(1)	4156(1)	2526(1)	37(1)	
O(6A)	1741(1)	3506(1)	2194(1)	26(1)	
O(7A)	1005(1)	3633(1)	-1572(1)	27(1)	
O(8A)	1396(1)	3859(1)	-3005(1)	35(1)	
O(9A)	-292(1)	4090(1)	-4104(1)	40(1)	
O(10A)	-1543(1)	5122(1)	-3671(1)	45(1)	
O(11A)	-386(1)	4269(1)	-1909(1)	30(1)	
O(12A)	5646(1)	2388(1)	5250(1)	31(1)	
O(13A)	7209(1)	2017(1)	5573(1)	34(1)	
O(14A)	5874(2)	3133(1)	6580(1)	57(1)	
O(15A)	7432(1)	2635(1)	7747(1)	48(1)	
O(16A)	9188(1)	2367(1)	7151(1)	52(1)	
C(1A)	2769(2)	3538(1)	265(1)	25(1)	
C(2A)	2346(2)	3369(1)	-559(1)	26(1)	
C(3A)	1448(2)	3836(1)	-819(1)	26(1)	
C(4A)	738(2)	3780(1)	-320(1)	28(1)	
C(5A)	1268(2)	3925(1)	476(1)	27(1)	
C(6A)	3622(2)	3077(1)	630(1)	27(1)	
C(7A)	4406(2)	3458(1)	1166(1)	26(1)	
C(8A)	5936(2)	3260(1)	2021(1)	27(1)	
C(9A)	6135(2)	2777(1)	2695(1)	29(1)	
C(10Å)	5612(2)	2974(1)	3294(1)	27(1)	
C(11A)	5956(2)	2569(1)	4010(1)	30(1)	
C(12A)	5374(2)	2782(1)	4567(1)	28(1)	
C(13A)	4280(2)	2697(1)	4264(1)	29(1)	
C(14A)	4039(2)	3096(1)	3519(1)	27(1)	
C(15A)	2997(2)	3026(1)	3098(1)	28(1)	
C(16A)	2656(2)	3629(1)	2577(1)	26(1)	
C(17A)	1207(2)	4108(1)	1810(1)	30(1)	
C(18A)	658(2)	3864(1)	1049(1)	31(1)	
C(19A)	3094(2)	3563(2)	-1003(1)	36(1)	
C(20A)	2080(2)	2590(1)	-672(1)	35(1)	
C(21A)	557(2)	4170(1)	-2044(1)	26(1)	
C(22A)	463(2)	3908(1)	-2836(1)	28(1)	
C(23A)	-133(2)	4408(1)	-3393(1)	29(1)	
C(24A)	-1086(2)	4575(1)	-3193(1)	32(1)	

C(25A)	-916(2)	4800(1)	-2385(1)	34(1)
C(26A)	-96(2)	4534(2)	-4665(1)	50(1)
C(27A)	-2551(2)	5202(2)	-3678(2)	66(1)
C(28A)	6750(2)	3261(1)	1629(1)	29(1)
C(29A)	7542(2)	3805(1)	1869(1)	32(1)
C(30A)	6859(2)	3854(1)	1121(1)	32(1)
C(31A)	7264(2)	3716(2)	444(1)	41(1)
C(32A)	7815(2)	4359(2)	250(2)	52(1)
C(33A)	6553(2)	2553(1)	5686(1)	30(1)
C(34A)	6498(2)	2570(1)	6491(1)	32(1)
C(35A)	7492(2)	2688(1)	6985(1)	36(1)
C(36A)	8222(2)	2172(2)	6816(1)	36(1)
C(37A)	8175(2)	2167(2)	5989(1)	39(1)
C(38A)	7657(2)	3251(1)	8168(1)	41(1)
C(39A)	9543(2)	2134(2)	7883(1)	42(1)
C(40A)	3979(2)	1920(1)	4155(2)	39(1)
C(41A)	3754(2)	3045(2)	4816(1)	41(1)
C(42A)	610(2)	4372(2)	2322(1)	37(1)
C(43A)	199(3)	5105(2)	2248(2)	63(1)
C(44A)	1041(2)	4922(2)	2880(2)	50(1)
C(45A)	948(2)	4875(2)	3677(2)	54(1)
C(46A)	1747(2)	4419(2)	4138(2)	49(1)
O(1B)	7128(1)	1377(1)	10102(1)	28(1)
O(1B) O(2B)	9131(1)	1854(1)	10102(1)	29(1)
O(3B)	9294(1)	938(1)	11660(1)	36(1)
O(4B)	8309(1)	1590(1)	12894(1)	23(1)
O(5B)	6472(1)	892(1)	12136(1)	24(1)
O(6B)	7194(1)	231(1)	11406(1)	36(1)
O(0B) O(7B)	5177(1)	1010(1)	8085(1)	27(1)
O(7B) O(8B)	5917(1)	960(1)	7111(1)	30(1)
O(0B) O(9B)	5272(1)	61(1)	5314(1)	43(1)
O(10B)	3272(1) 3444(1)	245(1)	5718(1)	37(1)
O(10B) O(11B)	3693(1)	92(1)	7297(1)	33(1)
O(11B) O(12B)	10042(1)	2178(1)	14914(1)	27(1)
O(12B) O(13B)	10042(1)	1250(1)	14914(1) 15690(1)	32(1)
O(13B) O(14B)	11593(1)	2972(1)	15719(1)	32(1) 33(1)
O(14B) O(15B)	12211(1)	969(1)	17411(1)	40(1)
O(15B) O(16B)	12211(1) 12347(1)	2503(1)	17411(1)	• •
, ,	, ,	. ,	. ,	35(1)
C(1B) C(2B)	6296(2) 5476(2)	958(1) 1081(1)	10118(1) 0425(1)	25(1) 27(1)
· ,	, ,	1081(1)	9425(1) 8750(1)	• •
C(3B)	5908(2) 6832(2)	892(1) 1207(1)	8759(1) 8761(1)	25(1) 32(1)
C(4B)	6832(2) 7544(2)	1297(1)	8761(1)	32(1)
C(5B)	7544(2)	1177(1)	9494(1) 10850(1)	30(1)
C(6B)	6049(2) 6654(2)	1122(1)	10859(1)	26(1)
C(7B)	6654(2) 6823(2)	698(1)	11483(1) 12774(1)	24(1)
C(8B)	6833(2)	430(1)	12774(1)	24(1)

C(9B)	7252(2)	886(1)	13438(1)	25(1)
C(10B)	8274(2)	1130(1)	13500(1)	24(1)
C(11B)	8693(2)	1500(1)	14231(1)	27(1)
C(12B)	9696(2)	1779(1)	14240(1)	25(1)
C(13B)	9736(2)	2240(1)	13565(1)	25(1)
C(14B)	9284(2)	1785(1)	12890(1)	24(1)
C(15B)	9239(2)	2109(1)	12135(1)	27(1)
C(16B)	9216(2)	1561(1)	11547(1)	26(1)
C(17B)	9231(2)	1382(1)	10274(1)	30(1)
C(18B)	8486(2)	1583(2)	9579(1)	34(1)
C(19B)	4653(2)	566(2)	9445(1)	37(1)
C(20B)	5116(2)	1844(1)	9387(1)	39(1)
C(21B)	5280(2)	595(1)	7480(1)	25(1)
C(22B)	4293(2)	522(1)	6958(1)	25(1)
C(23B)	4362(2)	181(1)	6228(1)	28(1)
C(24B)	5142(2)	511(1)	5903(1)	32(1)
C(25B)	6071(2)	565(1)	6489(1)	31(1)
C(26B)	2961(2)	-400(2)	5523(2)	53(1)
C(27B)	5781(2)	387(2)	4818(2)	51(1)
C(28B)	5993(2)	-6(1)	12873(1)	26(1)
C(29B)	6178(2)	-732(1)	13214(1)	33(1)
C(30B)	5714(2)	-645(1)	12400(1)	31(1)
C(31B)	4671(2)	-814(2)	12096(1)	42(1)
C(32B)	4251(2)	-363(2)	11415(2)	71(1)
C(33B)	10806(2)	1870(1)	15406(1)	26(1)
C(34B)	11192(2)	2388(1)	16027(1)	25(1)
C(35B)	11968(2)	2022(1)	16615(1)	27(1)
C(36B)	11533(2)	1370(1)	16880(1)	31(1)
C(37B)	11187(2)	894(1)	16213(1)	34(1)
C(38B)	13384(2)	2523(2)	17374(1)	39(1)
C(39B)	12213(2)	1096(2)	18159(1)	49(1)
C(40B)	9190(2)	2933(1)	13580(1)	32(1)
C(41B)	10798(2)	2391(1)	13576(1)	35(1)
C(42B)	10257(2)	1415(1)	10194(1)	32(1)
C(43B)	10629(2)	811(2)	9804(1)	45(1)
C(44B)	10998(2)	919(1)	10629(1)	36(1)
C(45B)	12026(2)	1155(2)	10932(2)	44(1)
C(46B)	12132(2)	1587(2)	11638(2)	52(1)
O(1W)	5457(6)	2483(4)	7763(4)	61(2)

O(1A)-C(5A)	1.427(3)
O(1A)-C(1A)	1.434(3)
O(2A)-C(7A)	1.202(3)
O(3A)-C(7A)	1.350(3)
O(3A)-C(8A)	1.470(3)
O(4A)-C(10A)	1.434(3)
O(4A)-C(14A)	1.435(3)
O(5A)-C(16A)	1.199(3)
O(6A)-C(16A)	1.353(3)
O(6A)-C(17A)	1.464(3)
O(7A)-C(21A)	1.400(3)
O(7A)-C(3A)	1.449(3)
O(8A)-C(22A)	1.431(3)
O(9A)-C(26A)	1.415(3)
O(9A)-C(23A)	1.422(3)
O(10A)-C(24A)	1.423(3)
O(10A)-C(27A)	1.436(3)
O(11A)-C(21A)	1.429(3)
O(11A)-C(25A)	1.436(3)
O(12A)-C(33A)	1.395(3)
O(12A)-C(12A)	1.447(3)
O(13A)-C(33A)	1.426(3)
O(13A)-C(37A)	1.443(3)
O(14A)-C(34A)	1.423(3)
O(15A)-C(38A)	1.402(3)
O(15A)-C(35A)	1.438(3)
O(16A)-C(39A)	1.408(3)
O(16A)-C(36A)	1.422(3)
C(1A)-C(6A)	1.523(3)
C(1A)-C(2A)	1.545(3)
C(2A)-C(19A)	1.527(3)
C(2A)-C(20A)	1.528(3)
C(2A)-C(3A)	1.540(3)
C(3A)-C(4A)	1.518(3)
C(4A)-C(5A)	1.524(3)
C(5A)-C(18A)	1.519(3)
C(6A)-C(7A)	1.501(3)
C(8A)-C(28A)	1.497(3)
C(8A)-C(9A)	1.523(3)
C(9A)-C(10A)	1.514(3)
C(10A)-C(11A)	1.519(3)
C(11A)-C(12A)	1.514(3)
C(12A)-C(13A)	1.538(3)
C(12A) - C(40A)	1.536(3)

Table S3. Bond lengths [Å] and angles $[\circ]$ for cocosolide (1)

C(12A) C(41A)	1 542(2)
C(13A)- $C(41A)$	1.543(3)
C(13A)- $C(14A)$	1.545(3)
C(14A)-C(15A)	1.515(3)
C(15A)-C(16A)	1.506(3)
C(17A)-C(42A)	1.494(3)
C(17A)-C(18A)	1.523(3)
C(21A)-C(22A)	1.528(3)
C(22A)-C(23A)	1.513(3)
C(23A)-C(24A)	1.514(3)
C(24A)-C(25A)	1.524(3)
C(28A)-C(30A)	1.498(3)
C(28A)-C(29A)	1.519(3)
C(29A)-C(30A)	1.507(3)
C(30A)-C(31A)	1.516(3)
	. ,
C(31A)-C(32A)	1.535(4)
C(33A)-C(34A)	1.513(3)
C(34A)-C(35A)	1.517(3)
C(35A)-C(36A)	1.510(4)
C(36A)-C(37A)	1.521(3)
C(42A)-C(44A)	1.500(4)
C(42A)-C(43A)	1.503(4)
C(43A)-C(44A)	1.514(4)
C(44A)-C(45A)	1.516(4)
C(45A)-C(46A)	1.528(4)
O(1B)-C(1B)	1.430(3)
O(1B)-C(5B)	1.436(3)
O(2B)-C(16B)	1.349(3)
O(2B)-C(17B)	1.461(3)
O(3B)-C(16B)	1.202(3)
O(4B)-C(10B)	1.434(3)
O(4B)-C(10B) O(4B)-C(14B)	1.434(3)
O(4B)-C(14B) O(5B)-C(7B)	1.346(3)
O(5B)- $C(8B)$	1.469(3)
O(6B)-C(7B)	1.201(3)
O(7B)-C(21B)	1.405(3)
O(7B)-C(3B)	1.452(3)
O(8B)-C(21B)	1.430(3)
O(8B)-C(25B)	1.433(3)
O(9B)-C(27B)	1.431(3)
O(9B)-C(24B)	1.432(3)
O(10B)-C(26B)	1.411(3)
O(10B)-C(23B)	1.433(3)
O(11B)-C(22B)	1.424(3)
O(12B)-C(33B)	1.382(3)
O(12B)-C(12B)	1.450(3)
O(13B)-C(37B)	1.427(3)
- () - ()	(0)

O(13B)-C(33B)	1.429(3)
O(14B)-C(34B)	1.423(3)
O(15B)-C(39B)	1.408(3)
	1.431(3)
O(15B)-C(36B)	• • •
O(16B)-C(35B)	1.434(3)
O(16B)-C(38B)	1.435(3)
C(1B)-C(6B)	1.524(3)
C(1B)-C(2B)	1.547(3)
C(2B)-C(19B)	1.531(3)
C(2B)-C(20B)	1.531(3)
C(2B)-C(3B)	1.539(3)
C(3B)-C(4B)	1.520(3)
C(4B)-C(4B)	1.526(3)
	• •
C(5B)-C(18B)	1.519(3)
C(6B)-C(7B)	1.509(3)
C(8B)-C(28B)	1.497(3)
C(8B)-C(9B)	1.514(3)
C(9B)-C(10B)	1.503(3)
C(10B)-C(11B)	1.523(3)
C(11B)-C(12B)	1.515(3)
C(12B)-C(13B)	1.539(3)
C(13B)-C(40B)	1.529(3)
C(13B)-C(41B)	1.531(3)
C(13B)-C(14B)	1.538(3)
C(14B) - C(14B)	1.517(3)
C(15B)-C(16B)	1.502(3)
	. ,
C(17B)-C(42B)	1.498(3)
C(17B)-C(18B)	1.521(3)
C(21B)-C(22B)	1.521(3)
C(22B)-C(23B)	1.522(3)
C(23B)-C(24B)	1.511(3)
C(24B)-C(25B)	1.513(3)
C(28B)-C(30B)	1.496(3)
C(28B)-C(29B)	1.514(3)
C(29B)-C(30B)	1.514(3)
C(30B)-C(31B)	1.496(3)
C(31B)-C(32B)	1.530(4)
C(33B)-C(34B)	1.519(3)
C(34B)-C(35B)	1.533(3)
C(35B)-C(36B)	1.513(3)
	. ,
C(36B)-C(37B)	1.522(3)
C(42B)-C(44B)	1.506(3)
C(42B)-C(43B)	1.513(4)
C(43B)-C(44B)	1.517(3)
C(44B)-C(45B)	1.510(4)
C(45B)-C(46B)	1.522(4)

C(5A)-O(1A)-C(1A) C(7A)-O(3A)-C(8A) C(10A)-O(4A)-C(14A) C(16A)-O(6A)-C(17A) C(21A)-O(7A)-C(3A) C(26A)-O(9A)-C(23A) C(24A)-O(10A)-C(27A) C(21A)-O(11A)-C(25A) C(33A)-O(12A)-C(12A) C(33A)-O(12A)-C(12A) C(33A)-O(13A)-C(37A) C(38A)-O(15A)-C(35A) C(39A)-O(16A)-C(36A) O(1A)-C(1A)-C(6A) O(1A)-C(1A)-C(2A) C(6A)-C(1A)-C(2A) C(19A)-C(2A)-C(2A) C(19A)-C(2A)-C(3A) C(20A)-C(2A)-C(1A) C(20A)-C(2A)-C(1A) C(20A)-C(2A)-C(1A) C(20A)-C(2A)-C(1A) C(20A)-C(2A)-C(1A) C(20A)-C(2A)-C(1A) C(3A)-C(2A)-C(1A) O(7A)-C(3A)-C(2A) C(4A)-C(3A)-C(2A) C(4A)-C(3A)-C(2A) C(3A)-C(4A)-C(5A) O(1A)-C(5A)-C(1A) O(1A)-C(5A)-C(4A) O(1A)-C(5A)-C(4A) C(2A)-C(7A)-C(6A) O(3A)-C(7A)-C(6A) O(3A)-C(7A)-C(6A) C(2A)-C(7A)-C(7A)-C(7A)-C(7A)C(2A) C(2A)-C(7A)	111.87(16) 117.69(18) 111.75(17) 116.90(18) 116.55(17) 114.4(2) 113.4(2) 111.55(17) 114.90(18) 110.73(19) 115.6(2) 116.1(2) 105.91(18) 114.48(19) 109.9(2) 108.67(19) 110.64(19) 108.66(19) 111.4(2) 107.49(18) 111.40(18) 107.33(18) 112.70(19) 109.07(19) 106.56(18) 110.57(18) 115.4(2) 114.6(2) 124.7(2) 126.1(2) 107.87(18) 107.19(19) 112.27(19) 115.0(2) 108.23(18) 109.27(19) 108.23(18) 109.27(19) 108.23(18) 109.27(19) 109.27(19) 109.27(19) 115.0(2) 108.23(18) 109.27(19) 109.27(19) 109.27(19) 109.27(19) 109.27(19) 109.27(19) 115.0(2) 108.23(18) 109.27(19) 109.27(19) 109.27(19) 109.27(19) 115.0(2) 108.23(18) 109.27(19)
O(3A)-C(8A)-C(28A)	107.87(18)
O(3A)-C(8A)-C(9A)	107.19(19)
C(28A)-C(8A)-C(9A)	112.27(19)
C(10A)-C(9A)-C(8A)	115.0(2)

C(12A)-C(13A)-C(41A)	108.2(2)
C(40A)-C(13A)-C(14A)	110.7(2)
C(12A)-C(13A)-C(14A)	106.12(18)
C(41A)-C(13A)-C(14A)	109.9(2)
O(4A)-C(14A)-C(15A)	109.9(2)
O(4A)-C(14A)-C(13A)	112.34(18)
C(15A)-C(14A)-C(13A)	112.34(18)
C(15A)-C(14A)-C(15A) C(16A)-C(15A)-C(14A)	. ,
	113.6(2)
O(5A)-C(16A)-O(6A)	124.4(2)
O(5A)-C(16A)-C(15A)	125.8(2)
O(6A)-C(16A)-C(15A)	109.8(2)
O(6A)-C(17A)-C(42A)	104.97(18)
O(6A)-C(17A)-C(18A)	108.44(19)
C(42A)-C(17A)-C(18A)	116.5(2)
C(5A)-C(18A)-C(17A)	111.8(2)
O(7A)-C(21A)-O(11A)	107.33(18)
O(7A)-C(21A)-C(22A)	107.10(18)
O(11A)-C(21A)-C(22A)	109.13(18)
O(8A)-C(22A)-C(23A)	107.17(19)
O(8A)-C(22A)-C(21A)	110.28(18)
C(23A)-C(22A)-C(21A)	111.53(19)
O(9A)-C(23A)-C(22A)	108.37(19)
O(9A)-C(23A)-C(24A)	110.6(2)
C(22A)-C(23A)-C(24A)	111.00(19)
O(10A)-C(24A)-C(23A)	108.0(2)
O(10A)-C(24A)-C(25A)	111.0(2)
C(23A)-C(24A)-C(25A)	110.3(2)
O(11A)-C(25A)-C(24A)	110.7(2)
C(8A)-C(28A)-C(30A)	120.5(2)
C(8A)-C(28A)-C(29A)	117.4(2)
C(30A)-C(28A)-C(29A)	59.94(16)
C(30A)-C(29A)-C(28A)	59.35(15)
C(28A)-C(30A)-C(29A)	60.71(15)
C(28A)-C(30A)-C(31A)	120.3(2)
C(29A)-C(30A)-C(31A)	117.8(2)
C(30A)-C(31A)-C(32A)	111.4(2)
O(12A)-C(33A)-O(13A)	107.69(18)
O(12A)-C(33A)-O(13A) O(12A)-C(33A)-C(34A)	107.09(18)
	• •
O(13A)-C(33A)-C(34A)	109.9(2)
O(14A)-C(34A)-C(33A)	107.6(2)
O(14A)-C(34A)-C(35A)	109.7(2)
C(33A)-C(34A)-C(35A)	110.6(2)
O(15A)-C(35A)-C(36A)	110.7(2)
O(15A)-C(35A)-C(34A)	109.3(2)
C(36A)-C(35A)-C(34A)	111.5(2)
O(16A)-C(36A)-C(35A)	112.4(2)

O(16A)-C(36A)-C(37A)	105.17(19)
C(35A)-C(36A)-C(37A)	109.6(2)
O(13A)-C(37A)-C(36A)	111.25(19)
C(17A)-C(42A)-C(44A)	118.1(2)
C(17A)-C(42A)-C(44A) C(17A)-C(42A)-C(43A)	121.2(2)
C(44A)-C(42A)-C(43A)	60.56(19)
C(42A)-C(43A)-C(44A)	59.60(18)
C(42A)-C(44A)-C(43A)	59.84(19)
C(42A)-C(44A)-C(45A)	121.3(3)
C(43A)-C(44A)-C(45A)	122.7(3)
C(44A)-C(45A)-C(46A)	111.3(2)
C(1B)-O(1B)-C(5B)	110.99(17)
C(16B)-O(2B)-C(17B)	116.62(19)
C(10B)-O(4B)-C(14B)	111.39(16)
C(7B)-O(5B)-C(8B)	117.27(17)
C(21B)-O(7B)-C(3B)	117.27(17)
C(21B)-O(7B)-C(3B) C(21B)-O(8B)-C(25B)	111.06(17)
	· · ·
C(27B)-O(9B)-C(24B)	113.8(2)
C(26B)-O(10B)-C(23B)	114.46(19)
C(33B)-O(12B)-C(12B)	114.41(17)
C(37B)-O(13B)-C(33B)	111.87(18)
C(39B)-O(15B)-C(36B)	116.06(19)
C(35B)-O(16B)-C(38B)	112.03(18)
O(1B)-C(1B)-C(6B)	105.36(18)
O(1B)-C(1B)-C(2B)	111.71(18)
C(6B)-C(1B)-C(2B)	115.88(19)
C(19B)-C(2B)-C(20B)	110.8(2)
C(19B)-C(2B)-C(3B)	108.38(19)
C(20B)-C(2B)-C(3B)	111.9(2)
C(19B)-C(2B)-C(1B)	108.62(19)
C(20B)-C(2B)-C(1B)	111.2(2)
	105.70(19)
C(3B)-C(2B)-C(1B)	· · ·
O(7B)-C(3B)-C(4B)	111.95(18)
O(7B)-C(3B)-C(2B)	108.57(18)
C(4B)-C(3B)-C(2B)	112.32(19)
C(5B)-C(4B)-C(3B)	109.14(19)
O(1B)-C(5B)-C(4B)	110.7(2)
O(1B)-C(5B)-C(18B)	107.00(19)
C(4B)-C(5B)-C(18B)	114.3(2)
C(7B)-C(6B)-C(1B)	112.12(19)
O(6B)-C(7B)-O(5B)	124.4(2)
O(6B)-C(7B)-C(6B)	124.8(2)
O(5B)-C(7B)-C(6B)	110.66(19)
O(5B)-C(8B)-C(28B)	106.55(17)
O(5B)-C(8B)-C(9B)	108.49(18)
C(28B)-C(8B)-C(9B)	• • •
C(20D)- $C(0D)$ - $C(3D)$	113.27(18)

C(10B)-C(9B)-C(8B)	115.80(19)
O(4B)-C(10B)-C(9B)	109.32(17)
O(4B)-C(10B)-C(11B)	110.00(18)
C(9B)-C(10B)-C(11B)	112.83(18)
C(12B)-C(11B)-C(10B)	110.43(19)
	• • •
O(12B)-C(12B)-C(11B)	109.11(18)
O(12B)-C(12B)-C(13B)	109.69(19)
C(11B)-C(12B)-C(13B)	113.36(18)
C(40B)-C(13B)-C(41B)	110.0(2)
C(40B)-C(13B)-C(14B)	112.14(19)
C(41B)-C(13B)-C(14B)	110.20(19)
C(40B)-C(13B)-C(12B)	111.27(19)
C(41B)-C(13B)-C(12B)	108.18(19)
C(14B)-C(13B)-C(12B)	104.93(18)
O(4B)-C(14B)-C(15B)	105.57(17)
O(4B)-C(14B)-C(13B)	111.54(17)
C(15B)-C(14B)-C(13B)	
	116.58(19)
C(16B)-C(15B)-C(14B)	112.2(2)
O(3B)-C(16B)-O(2B)	123.6(2)
O(3B)-C(16B)-C(15B)	124.7(2)
O(2B)-C(16B)-C(15B)	111.7(2)
O(2B)-C(17B)-C(42B)	108.22(19)
O(2B)-C(17B)-C(18B)	108.8(2)
C(42B)-C(17B)-C(18B)	114.4(2)
C(5B)-C(18B)-C(17B)	112.9(2)
O(7B)-C(21B)-O(8B)	107.53(18)
O(7B)-C(21B)-C(22B)	108.27(18)
O(8B)-C(21B)-C(22B)	109.32(18)
	• • •
O(11B)-C(22B)-C(21B)	109.19(18)
O(11B)-C(22B)-C(23B)	108.30(19)
C(21B)-C(22B)-C(23B)	111.79(19)
O(10B)-C(23B)-C(24B)	109.95(19)
O(10B)-C(23B)-C(22B)	108.72(19)
C(24B)-C(23B)-C(22B)	112.2(2)
O(9B)-C(24B)-C(23B)	106.8(2)
O(9B)-C(24B)-C(25B)	110.4(2)
C(23B)-C(24B)-C(25B)	109.97(19)
O(8B)-C(25B)-C(24B)	110.30(19)
C(30B)-C(28B)-C(8B)	119.4(2)
C(30B) - C(28B) - C(29B)	60.39(16)
	, ,
C(8B)-C(28B)-C(29B)	119.2(2)
C(30B)-C(29B)-C(28B)	59.22(15)
C(31B)-C(30B)-C(28B)	120.2(2)
C(31B)-C(30B)-C(29B)	121.6(2)
C(28B)-C(30B)-C(29B)	60.39(15)
C(30B)-C(31B)-C(32B)	111.2(2)

O(12B)-C(33B)-O(13B)	107.47(18)
O(12B)-C(33B)-C(34B)	108.84(19)
O(13B)-C(33B)-C(34B)	110.55(18)
O(14B)-C(34B)-C(33B)	108.02(18)
O(14B)-C(34B)-C(35B)	110.45(18)
C(33B)-C(34B)-C(35B)	108.96(19)
O(16B)-C(35B)-C(36B)	112.53(19)
O(16B)-C(35B)-C(34B)	109.92(19)
C(36B)-C(35B)-C(34B)	108.68(19)
O(15B)-C(36B)-C(35B)	113.4(2)
O(15B)-C(36B)-C(37B)	106.7(2)
C(35B)-C(36B)-C(37B)	107.5(2)
O(13B)-C(37B)-C(36B)	109.0(2)
C(17B)-C(42B)-C(44B)	119.9(2)
C(17B)-C(42B)-C(43B)	117.8(2)
C(44B)-C(42B)-C(43B)	60.33(17)
C(42B)-C(43B)-C(44B)	59.61(16)
C(42B)-C(44B)-C(45B)	121.0(2)
C(42B)-C(44B)-C(43B)	60.06(17)
C(45B)-C(44B)-C(43B)	120.2(2)
C(44B)-C(45B)-C(46B)	112.4(2)

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (Å²x 10³) for cocosolide (1). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

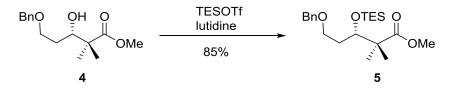
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$		U^{11}	U ²²	U ³³	U ²³	U ¹³	U12
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\overline{O(1A)}$	24(1)	33(1)	27(1)	7(1)	7(1)	6(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$. ,		• •		. ,	. ,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	· · ·	. ,	• •				
$\begin{array}{llllllllllllllllllllllllllllllllllll$. ,						
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$			• •				
$\begin{array}{llllllllllllllllllllllllllllllllllll$. ,	. ,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,					• •	
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$, ,						
$\begin{array}{llllllllllllllllllllllllllllllllllll$, ,	. ,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· /						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(14A)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(16A)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1A)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2A)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3A)						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4A)		32(1)	27(1)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5A)	24(1)	29(1)	26(1)		5(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6A)	24(1)	28(1)	28(1)	0(1)	3(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7A)	21(1)	31(1)	26(1)	4(1)		4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8A)	20(1)	30(1)	28(1)	-1(1)		1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9A)	20(1)	34(2)	30(1)	0(1)	2(1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10A)	22(1)	28(1)	30(1)	-2(1)	3(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11A)	23(1)	35(1)	31(1)	-2(1)	2(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12A)	29(1)	27(1)	27(1)	3(1)	4(1)	1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13A)	22(1)					2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14A)	24(1)		32(1)	-1(1)	8(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15A)	22(1)	29(1)			5(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18A)	• •		. ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19A)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$C(23A) \ 40(2) \ 22(1) \ 24(1) \ 1(1) \ 4(1) \ -4(1)$	C(21A)	. ,	. ,				
	C(22A)						
C(24A) 35(2) 26(1) 29(1) 4(1) -2(1) 1(1)	. ,					. ,	
	C(24A)	35(2)	26(1)	29(1)	4(1)	-2(1)	1(1)

C(25A)	30(1)	35(2)	32(1)	5(1)	0(1)	8(1)
C(26A)	66(2)	55(2)	26(2)	4(1)	10(2)	-3(2)
C(27A)	53(2)	82(3)	55(2)	4(2)	-5(2)	36(2)
C(28A)	22(1)	31(1)	32(1)	0(1)	3(1)	1(1)
C(29A)	26(1)	29(1)	40(2)	-1(1)	5(1)	0(1)
C(30A)	25(1)	36(2)	35(2)	6(1)	6(1)	6(1)
C(31A)	31(2)	54(2)	37(2)	6(1)	6(1)	-1(1)
C(32A)	40(2)	72(2)	46(2)	16(2)	12(1)	-5(2)
C(33A)	32(1)	29(1)	29(1)	-2(1)	4(1)	-5(1)
C(34A)	40(2)	27(1)	32(1)	-3(1)	12(1)	-1(1)
C(35A)	54(2)	31(2)	24(1)	-1(1)	13(1)	-16(1)
C(36A)	30(1)	48(2)	29(1)	2(1)	3(1)	-14(1)
C(37A)	25(1)	63(2)	27(1)	-2(1)	1(1)	-5(1)
C(38A)	48(2)	43(2)	30(2)	-10(1)	3(1)	8(1)
C(39A)	40(2)	53(2)	29(2)	7(1)	0(1)	6(1)
C(40A)	30(1)	38(2)	46(2)	10(1)	0(1)	-7(1)
C(41A)	34(2)	52(2)	41(2)	5(1)	15(1)	9(1)
C(42A)	42(2)	42(2)	30(1)	3(1)	12(1)	19(1)
C(43A)	88(3)	62(2)	43(2)	9(2)	21(2)	47(2)
C(44A)	71(2)	42(2)	41(2)	4(1)	21(2) 21(2)	22(2)
C(45A)	70(2)	60(2)	37(2)	-1(2)	20(2)	29(2)
C(46A)	54(2)	61(2)	34(2)	4(2)	15(1)	15(2)
O(1B)	31(1)	31(1)	23(1)	-3(1)	10(1)	-8(1)
O(2B)	34(1)	31(1)	22(1)	3(1)	9(1)	-3(1)
O(3B)	51(1)	30(1)	29(1)	3(1)	12(1)	1(1)
O(4B)	22(1)	27(1)	21(1)	2(1)	5(1)	-3(1)
O(5B)	28(1)	25(1)	19(1)	-1(1)	6(1)	-2(1)
O(6B)	44(1)	39(1)	27(1)	2(1)	14(1)	11(1)
O(0B) O(7B)	34(1)	26(1)	21(1)	-3(1)	5(1)	3(1)
O(7B) O(8B)	38(1)	30(1)	23(1)	-2(1)	11(1)	-6(1)
O(0B) O(9B)	62(1)	44(1)	30(1)	-12(1)	21(1)	-5(1)
O(10B)	36(1)	36(1)	32(1)	-2(1)	-6(1)	2(1)
O(10B) O(11B)	31(1)	35(1)	36(1)	2(1) $2(1)$	12(1)	1(1)
O(11B) O(12B)	26(1)	30(1)	22(1)	-5(1)	-2(1)	2(1)
O(12B) O(13B)	24(1)	31(1)	36(1)	5(1)	1(1)	-7(1)
O(13D) O(14B)	40(1)	30(1)	28(1)	-2(1)	5(1)	-9(1)
O(14D) O(15B)	37(1)	54(1)	30(1)	13(1)	8(1)	16(1)
O(15B) O(16B)	37(1) 32(1)	40(1)	26(1)	-10(1)	-5(1)	6(1)
C(10D)	29(1)	23(1)	23(1)	-2(1)	9(1)	-4(1)
C(1B) C(2B)	30(1)	29(1)	23(1) 23(1)	-2(1) -1(1)	7(1)	-4(1) 2(1)
C(2B) C(3B)	28(1)	27(1)	23(1) 21(1)	-1(1) -1(1)	7(1) 7(1)	-1(1)
C(3B) C(4B)	39(2)	36(2)	23(1)	-1(1) -1(1)	9(1)	-6(1)
C(4B) C(5B)	33(1)	37(2)	23(1) 22(1)			-0(1) -4(1)
C(5B) C(6B)	27(1)	$\frac{37(2)}{29(1)}$	22(1) 23(1)	-2(1) -1(1)	13(1) 7(1)	-4(1) 2(1)
C(0B) C(7B)	27(1) 25(1)	29(1) 27(1)	23(1) 24(1)	-3(1)	$\frac{7(1)}{11(1)}$	-4(1)
C(7B) C(8B)	23(1) 24(1)	27(1) 27(1)	19(1)	-3(1) 1(1)	5(1)	-4(1) 0(1)
C(OD)	2 4 (1)	2/(1)	17(1)	1(1)	J(1)	U(1)

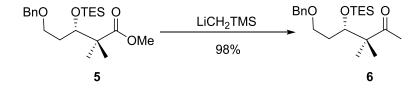
	0((1))	20(1)	22 (1)	$\mathbf{O}(1)$	$\mathcal{L}(1)$	4/1)
C(9B)	26(1)	28(1)	22(1)	-3(1)	6(1)	-4(1)
C(10B)	26(1)	24(1)	20(1)	1(1)	5(1)	-1(1)
C(11B)	25(1)	32(1)	22(1)	-1(1)	3(1)	-2(1)
C(12B)	24(1)	27(1)	22(1)	-4(1)	1(1)	1(1)
C(13B)	21(1)	29(1)	25(1)	0(1)	2(1)	-1(1)
C(14B)	22(1)	27(1)	25(1)	-1(1)	9(1)	-3(1)
C(15B)	28(1)	29(1)	24(1)	1(1)	6(1)	-2(1)
C(16B)	24(1)	30(1)	28(1)	5(1)	10(1)	-4(1)
C(17B)	35(1)	33(2)	24(1)	-5(1)	8(1)	-6(1)
C(18B)	36(2)	45(2)	24(1)	2(1)	11(1)	-9(1)
C(19B)	35(2)	51(2)	26(1)	-2(1)	9(1)	-8(1)
C(20B)	49(2)	39(2)	28(1)	-1(1)	5(1)	17(1)
C(21B)	30(1)	24(1)	21(1)	-1(1)	8(1)	0(1)
C(22B)	31(1)	22(1)	23(1)	1(1)	8(1)	3(1)
C(23B)	32(1)	28(1)	22(1)	0(1)	1(1)	4(1)
C(24B)	48(2)	30(1)	21(1)	-3(1)	12(1)	6(1)
C(25B)	40(2)	32(1)	24(1)	-1(1)	14(1)	0(1)
C(26B)	49(2)	46(2)	52(2)	-12(2)	-13(2)	0(2)
C(27B)	75(2)	57(2)	30(2)	5(1)	28(2)	14(2)
C(28B)	28(1)	26(1)	24(1)	-2(1)	8(1)	-4(1)
C(29B)	38(2)	30(1)	31(1)	5(1)	7(1)	-3(1)
C(30B)	36(2)	33(1)	25(1)	-6(1)	9(1)	-10(1)
C(31B)	44(2)	47(2)	34(2)	0(1)	4(1)	-22(1)
C(32B)	57(2)	91(3)	49(2)	26(2)	-20(2)	-35(2)
C(33B)	25(1)	27(1)	24(1)	0(1)	4(1)	-2(1)
C(34B)	25(1)	28(1)	23(1)	-1(1)	5(1)	-2(1)
C(35B)	25(1)	32(1)	23(1)	-7(1)	3(1)	-1(1)
C(36B)	26(1)	39(2)	27(1)	10(1)	3(1)	7(1)
C(37B)	33(2)	29(1)	37(2)	5(1)	3(1)	-2(1)
C(38B)	34(2)	41(2)	36(2)	-10(1)	-6(1)	3(1)
C(39B)	51(2)	66(2)	27(2)	0(1)	-1(1)	18(2)
C(40B)	34(1)	29(1)	32(1)	-1(1)	5(1)	-2(1)
C(41B)	26(1)	43(2)	33(2)	4(1)	1(1)	-7(1)
C(42B)	34(2)	34(2)	31(1)	-3(1)	13(1)	-5(1)
C(43B)	48(2)	55(2)	35(2)	-12(1)	17(1)	-3(2)
C(44B)	40(2)	38(2)	32(1)	-2(1)	11(1)	-2(1)
C(45B)	40(2)	46(2)	46(2)	0(1)	9(1)	5(1)
C(46B)	51(2)	52(2)	50(2)	-8(2)	4(2)	-5(2)
O(1W)	75(6)	38(5)	70(6)	5(4)	17(5)	14(4)

	Х	У	Z	U(eq)	
H(8A)	1688	3505	-2793	42	
H(14Å)	5496	2998	6842	69	
H(1A)	2986	4040	304	30	
H(3A)	1664	4338	-822	31	
H(4A1)	452	3302	-358	34	
H(4A2)	209	4126	-476	34	
H(5A)	1533	4415	499	32	
H(6A1)	3381	2688	894	32	
H(6A2)	3905	2865	239	32	
H(8A1)	5814	3750	2174	32	
H(9A1)	5949	2291	2529	35	
H(9A2)	6839	2778	2912	35	
H(10A)	5712	3489	3401	33	
H(11A)	5881	2057	3912	36	
H(11B)	6649	2668	4215	36	
H(12A)	5506	3292	4687	34	
H(14B)	4182	3607	3619	32	
H(15A)	2925	2582	2811	34	
H(15B)	2579	2994	3458	34	
H(17A)	1677	4482	1747	36	
H(18A)	457	3367	1079	37	
H(18B)	66	4153	891	37	
H(19A)	3630	3226	-894	54	
H(19B)	3340	4038	-866	54	
H(19C)	2793	3549	-1533	54	
H(20A)	1783	2505	-1195	52	
H(20B)	1622	2464	-369	52	
H(20C)	2665	2302	-524	52	
H(21A)	941	4616	-1956	31	
H(22A)	152	3433	-2890	33	
H(23A)	237	4856	-3398	35	
H(24A)	-1505	4146	-3272	38	
H(25A)	-550	5248	-2313	40	
H(25B)	-1545	4880	-2253	40	
H(26A)	-527	4943	-4725	74	
H(26B)	-202	4273	-5133	74	
H(26C)	577	4693	-4527	74	
H(27A)	-2865	4740	-3738	99	
H(27B)	-2855	5509	-4090	99	
H(27C)	-2620	5414	-3211	99	

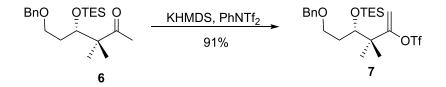
Table S5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for cocosolide (1).

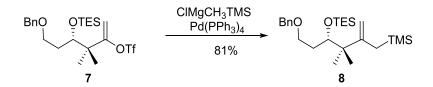

H(28A)	6966	2787	1493	35
H(29A)	7466	4151	2251	38
H(29B)	8217	3658	1888	38
H(30A)	6359	4233	1066	39
H(31A)	6729	3600	18	49
H(31B)	7705	3306	539	49
H(32A)	7373	4761	136	78
H(32B)	8082	4250	-180	78
H(32C)	8343	4477	672	78
H(33A)	6770	3021	5537	36
H(34A)	6227	2114	6625	39
H(35A)	7708	3176	6896	43
H(36A)	8085	1689	6983	43
H(37A)	8382	2632	5838	47
H(37B)	8625	1807	5877	47
H(38A)	8345	3359	8228	62
H(38B)	7512	3182	8656	62
H(38C)	7270	3644	7915	62
H(39A)	9160	2346	8205	63
H(39B)	10220	2276	8051	63
H(39C)	9494	1620	7901	63
H(40A)	4279	1709	3779	59
H(40B)	3275	1888	3992	59
H(40C)	4193	1666	4623	59
H(41A)	3959	2819	5301	62
H(41B)	3054	2989	4636	62
H(41C)	3915	3548	4860	62
H(42A)	206	4009	2500	45
H(43A)	-441	5178	2366	76
H(43B)	329	5406	1846	76
H(44A)	1677	5109	2820	60
H(45A)	311	4671	3692	65
H(45B)	982	5354	3892	65
H(46A)	1676	3933	3955	73
H(46B)	1700	4429	4657	73
H(46C)	2379	4602	4098	73
H(11E)	3211	327	7350	50
H(14D)	11617	3323	16000	49
H(1B)	6490	451	10123	30
H(3B)	6068	378	8790	30
H(4B1)	7115	1134	8349	39
H(4B2)	6688	1806	8692	39
H(5B)	7700	663	9540	36
H(6B1)	6154	1630	10968	32
H(6B2)	5358	1018	10825	32
H(8B)	7349	115	12665	28
		-		-

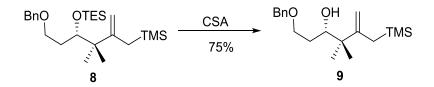
$\mathbf{U}(0\mathbf{D}1)$	6926	1206	13424	20
H(9B1) H(9B2)	6836 7225	1306 618	13424	30 30
H(10B)	8683	708	13464	28
H(11C)	8266	1895	14299	28 32
· · ·	8200	1165	14299	32 32
H(11D)			14043	32 30
H(12B)	10136	1367		
H(14C)	9672 8652	1342	12921	29
H(15C)	8653	2407	11997	32
H(15D)	9809	2417	12161	32
H(17B)	9094	890	10415	36
H(18C)	8349	2093	9594	41
H(18D)	8759	1493	9141	41
H(19D)	4922	98 5.40	9589	55
H(19E)	4219	540	8954	55
H(19F)	4292	730	9806	55
H(20D)	4632	1916	8925	59
H(20E)	5660	2165	9403	59
H(20F)	4824	1938	9808	59
H(21B)	5549	121	7651	30
H(22B)	3994	999	6857	30
H(23B)	4512	-330	6317	34
H(24B)	4934	990	5706	39
H(25C)	6305	87	6652	37
H(25D)	6572	800	6279	37
H(26D)	3371	-714	5306	79
H(26E)	2354	-314	5161	79
H(26F)	2822	-621	5965	79
H(27D)	5396	779	4562	77
H(27E)	5891	40	4454	77
H(27F)	6403	565	5099	77
H(28B)	5446	261	13001	31
H(29C)	6854	-901	13349	40
H(29D)	5763	-892	13546	40
H(30B)	6149	-753	12059	37
H(31C)	4302	-728	12481	51
H(31D)	4605	-1319	11959	51
H(32D)	4306	136	11552	106
H(32E)	3569	-484	11228	106
H(32F)	4609	-454	11030	106
H(33B)	11328	1743	15147	31
H(34B)	10653	2551	16252	30
H(35B)	12507	1873	16382	32
H(36B)	10973	1507	17095	38
H(37C)	11733	779	15984	41
H(37D)	10929	449	16370	41
H(38D)	13639	2056	17539	59
(27

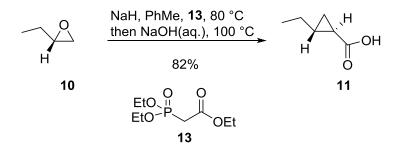

H(38E)	13613	2868	17769	59
H(38F)	13608	2660	16932	59
H(39D)	12570	1531	18322	74
H(39E)	12524	700	18461	74
H(39F)	11546	1145	18216	74
H(40D)	8501	2834	13533	48
H(40E)	9272	3232	13168	48
H(40F)	9446	3177	14049	48
H(41D)	11110	2602	14052	52
H(41E)	10838	2718	13175	52
H(41F)	11125	1950	13508	52
H(42B)	10499	1894	10101	38
H(43C)	11071	925	9476	54
H(43D)	10188	410	9639	54
H(44B)	10743	576	10948	43
H(45C)	12242	1442	10554	53
H(45D)	12449	736	11036	53
H(46D)	11768	2027	11527	78
H(46E)	12816	1694	11837	78
H(46F)	11879	1317	12004	78
H(1WA)	4935	2678	7807	73
H(1WB)	5382	2052	7858	73

Synthesis General Experimental Procedures. All reactions were conducted in flame-dried or oven-dried glassware under an atmosphere of dry nitrogen or argon. Oxygen and/or moisture sensitive solids and liquids were transferred appropriately. Concentration of solutions in vacuo was accomplished using a rotary evaporator fitted with a water aspirator. Residual solvents were removed under high vacuum (0.1-0.2 mm Hg). All reaction solvents were purified before use: Diethyl ether and tetrahydrofuran were distilled from sodium benzophenone ketyl. Toluene was distilled over molten sodium metal. Dichloromethane, dimethylformamide, diethylamine, triethylamine and diisoproylethylamine were distilled from CaH₂. Methanol was distilled from Mg/I₂, Flash column chromatography was performed using the indicated solvents on E. Qingdao silica gel 60 (230 - 400 mesh ASTM). TLC was carried out using pre-coated sheets (Qingdao silica gel 60-F250, 0.2 mm). Compounds were visualized with UV light, iodine, p-anisaldehyde stain, ceric ammonium molybdate stain, or phosphomolybdic acid in EtOH. NMR spectra were recorded on Bruker DPX 300 MHz, Avance 400 MHz or AV 500 MHz spectrometers. Chemical shifts were reported in parts per million (ppm), relative to either a tetramethylsilane (TMS) internal standard or the signals due to the solvent. The following abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet, br = broad, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of doublets; other combinations are derived from those listed above. AB quartet relationships are noted, but listed as a pair of doublets. Coupling constants (J) are reported in Hertz. 13 C NMR spectra were completely heterodecoupled and measured at 125, 100, or 75 MHz. Residual chloroform (δ_C 77.0 ppm) was used as internal reference for spectra measured in this solvent. Lowand high- resolution EI and ESI mass spectra were obtained using an AB QSTAR Elite mass spectrometer. Optical rotations were recorded on a Rudolph AutoPol I Polarimeter.

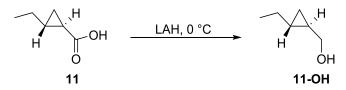

Synthesis Details.


To a solution of compound **4** (354 mg, 1.3 mmol) and 2,6-lutidine (0.35 mL, 4.1 mmol) in CH₂Cl₂ (10 mL), TES-triflate (0.31 mL, 1.9 mmol) was added at 0 °C. The reaction mixture was stirred for an additional hour and then quenched by the addition of a saturated aqueous solution of NaHCO₃ (10 mL). The reaction mixture was extracted with EtOAc (2 × 30 mL); and the combined organic layers were washed successively with a saturated aqueous solution of NH₄Cl (10 mL), brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in *vacuo*. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether = 95/5) to afford compound **5** (428 mg, 85%) as a colorless oil. $[\alpha]_D^{20}$ = -10.2 (*c* 5.0, DCM); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 4.48 (t, *J* = 11.9 Hz, 2H), 4.08 (dd, *J* = 8.6, 1.9 Hz, 1H), 3.63 (s, 3H), 3.53 – 3.46 (m, 2H), 1.81 – 1.67 (m, 1H), 1.67 – 1.55 (m, 1H), 1.16 (s, 3H), 1.08 (s, 3H), 0.92 (t, *J* = 7.9 Hz, 9H), 0.55 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 177.53, 138.41, 128.34, 127.71, 127.53, 74.09, 72.88, 67.65, 51.64, 48.31, 33.55, 21.14, 20.48, 6.99, 5.41; HRMS (ESI) *m/z* calcd for C₂₁H₃₆O4NaSi [M + Na]⁺: 403.2275, found: 403.2273.


To a solution of compound **5** (5.3 g, 13.90 mmol) in pentane (100 mL), (trimethylsilyl)methyllithium (27.5 mL, 27.50 mmol, 1.0 M in pentane) was cooled at 0 °C and stirred for 5 hours. MeOH (15 mL) was added dropwise to the reaction mixture and then stirred for 2 hours. The reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (30 mL) and then extracted with EtOAc (2 × 60 mL). The combined organic layers were washed successively with a saturated aqueous solution of NH₄Cl (30 mL), brine (30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether = 95/5) to give rise to compound **6** (5.0 g, 98%) as a colorless oil. $[\alpha]_D^{20}$ = -10.4 (*c* 10.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.24 (m, 5H), 4.54 – 4.44 (dd, *J* = 14.7, 11.8 Hz, 2H), 4.08 (dd, *J* = 8.5, 2.6 Hz, 1H), 3.51 (dd, *J* = 7.8, 5.4 Hz, 2H), 2.14 (s, 3H), 1.79 – 1.67 (m, 1H), 1.61 – 1.51 (m, 1H), 1.12 (s, 3H), 1.07 (s, 3H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.60 (q, *J* = 7.8 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 213.46, 138.52, 128.42, 127.77, 127.62, 74.25, 73.00, 67.55, 53.30, 34.21, 26.95, 21.78, 20.15, 7.11, 5.54; HRMS (ESI) *m/z* calcd for C₂₁H₃₆NaO₃Si [M + Na]⁺: 387.2326, found: 387.2323.


To a solution of ketone **6** (2.6 g, 7.1 mmol) in THF (35 mL) at -78 °C, KHMDS (11.5 mL, 9.2 mmol, 0.8 M in THF) was added dropwise. After being stirred at -78 °C for 1 hour, a solution of *N*-phenyltrifluoromethanesulfonimide (2.9 g, 8.1 mmol) in THF (10 mL) was added dropwise to the reaction mixture and stirred for additional 2 hours. The reaction mixture was quenched with a saturated aqueous solution of NH₄Cl (20 mL) and then extracted with hexanes (2 × 100 mL). The combined organic layers were washed successively with a saturated aqueous solution of NaHCO₃ (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether =96/4) to afford compound **7** (3.2 g, 91%) as a colorless oil. [α]_D²⁰= -10.6 (*c* 2.0, DCM); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 5H), 5.13 (d, *J* = 4.3 Hz, 1H), 5.01 (d, *J* = 4.3 Hz, 1H), 4.49 (dd, *J* = 15.3, 11.9 Hz, 2H), 3.83 (dd, *J* = 8.8, 2.2 Hz, 1H), 3.56 – 3.44 (m, 2H), 1.88 (dtd, *J* = 14.1, 8.0, 2.2 Hz, 1H), 1.63 – 1.51 (m, 2H), 1.57 (s, 1H), 1.15 (s, 3H), 1.09 (s, 3H), 0.92 (t, *J* = 8.0 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.09, 138.34, 128.33, 127.67, 127.54, 102.59, 72.92, 72.87, 67.55, 45.33, 33.31, 22.74, 20.40, 6.98, 5.35; HRMS (ESI) *m*/z calcd for C₂₂H₃₅F₃NaO₅SSi[M + Na]⁺: 519.1819, found: 519.1820.

A dry flask was charged with LiCl (900 mg, 21.2 mmol) and the solid was flame-dried under reduced pressure and purged with argon. Et₂O (25 mL) was added, followed by a solution of triflate 7 (2.5 g, 5.1 mmol) in 15 mL of Et₂O. The suspension was cooled to 0 °C and tetrakis(triphenylphosphine)-palladium(0) (471 mg, 0.4 mmol) was added, followed by (trimethylsilyl)methylmagnesium chloride (13.0 mL, 13.0 mmol, 1.0 M in Et₂O). After being stirred for 5 hours, the yellow suspension was filtered over a pad of a Celite, eluting with Et₂O (100 mL). The organic solution was poured over 50 mL of a saturated aqueous solution of NaHCO₃ and then extracted with Et_2O (2 × 50 mL). The combined organic layers were washed successively with a saturated aqueous solution of NaHCO₃ (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether =99/1) to afford compound 8 (1.8 g, 81%) as a colorless oil. $[\alpha]_D^{20} = -0.96$ (c 2.4, DCM); ¹H NMR (500 MHz, CDCl₃) δ 7.40 - 7.20 (m, 5H), 4.84 (s, 1H), 4.70 (s, 1H), 4.51 (dd, J = 13.6, 12.1 Hz, 2H), 3.85 (dd, J = 8.8, 1.9 Hz, 1H),3.58 - 3.46 (m, 2H), 1.86 (dtd, J = 14.3, 8.1, 2.0 Hz, 1H), 1.65 - 1.44 (m, 3H), 1.02 (s, 3H), 1.02(s, 3H), 0.99 (t, J = 7.9 Hz, 9H), 0.63 (q, J = 7.6 Hz, 6H), 0.07 (s, 9H); ¹³C NMR (125 MHz, CDC_{13}) δ 152.70, 138.83, 128.39, 127.69, 127.51, 109.21, 75.07, 72.88, 68.37, 45.16, 33.69, 25.85, 21.41, 20.50, 7.27, 5.71, -0.32; HRMS (ESI) m/z calcd for C₂₅H₄₆NaO₂Si₂ [M + Na]⁺: 457.2929, found: 457.2927.

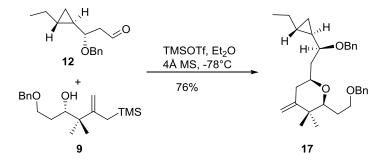


To a solution of compound **8** (450 mg, 1.04 mmol) in MeOH (5 ml) was added a solution of camphorsulfonic acid (21 mg, 0.09 mmol) in 1.5 mL of MeOH. The reaction mixture was stirred for 2 hours at room temperature before being quenched by Et₃N (1 mL). The reaction mixture was poured over a saturated aqueous solution of NaHCO₃ (20 mL), and extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with a saturated aqueous solution of NH₄Cl (20 mL), brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc =6/1) to give rise to compound **9** (250 mg, 75%) as a colorless oil. $[\alpha]_D^{20} = -7.3$ (*c* 2.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 4.86 (d, *J* = 1.0 Hz, 1H), 4.79 (d, *J* = 0.7 Hz, 1H), 4.53 (dd, *J* =14.5, 11.9 Hz, 2H), 3.75 – 3.64 (m, 3H), 2.46 (d, *J* = 2.1 Hz, 1H), 1.76 (ddd, *J* = 11.6, 6.6, 1.4 Hz, 1H), 1.62 (s, 2H), 1.66 – 1.57 (m, 3H), 1.53 (s, 2H), 1.05 (s, 3H), 1.00 (s, 3H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 152.61, 138.38, 128.48, 127.76, 127.70, 109.85, 74.47, 73.37, 69.85, 44.33, 31.33, 22.19, 22.16, 21.22, -0.42; HRMS (ESI) *m/z* calcd for C₁₉H₃₂NaO₂Si [M + Na]⁺: 343.2064, found: 343.2064.

To a suspension of sodium hydride (2.5 g, 60 mmol, 60% suspension in mineral oil) in toluene (100 mL) at 0 °C, triethylphosphonoacetate (**13**) (13 mL, 65 mmol) was added dropwise over 15 min. After being stirred for 10 min, epoxide **10** (4.2 mL, 50 mmol) was added dropwise over 35 min to the solution, and stirred for 6 hours. The reaction mixture was cooled to room temperature, water (50 mL) and 30% NaOH (50 mL) were added. The mixture was stirred under reflux for 2 hours. The layers were separated, and the organic phase is discarded. The pH value of the reaction mixture was adjusted to 2-3 by the addition of an aqueous solution of HCl. The mixture was then extracted with EtOAc (2×200 mL). The combined organic layers were washed with 10% NaCl (3×50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 1/1) to yield compound **11** (4.7 g, 82%) as a light yellow oil. [α]_D²⁰= -88.4 (*c* 1.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 11.30 (br, 1H), 1.44–1.35 (m, 1H), 1.35–1.24 (m, 3H), 1.18 (dt, *J* = 8.7, 4.3 Hz, 1H), 0.95 (t, *J* = 7.3 Hz, 3H), 0.75 (ddd, *J* = 8.0, 6.4, 4.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 181.43,

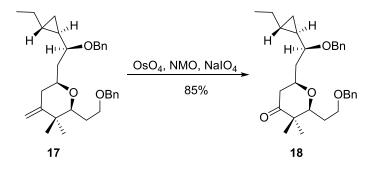
26.19, 25.72, 19.98, 16.21, 13.17; HRMS (ESI) *m*/*z* calcd for C₆H₉O₂ [M - H]⁻: 113.0608, found: 113.0608.

A solution of acid **11** (1.5 g, 40 mmol) in 20 mL was added dropwise to a solution of LiAlH₄ (3.5 g, 30 mmol) in diethyl ether (100 mL) at 0 °C. After being slowly warmed to room temperature and stirred for 2 hours, the reaction mixture was re-cooled to 0 °C and quenched by the addition of MeOH (10 mL), and followed by the addition of a saturated aqueous solution of Rochelle's salt (sodium potassium tartrate) (100 mL) and stirred for another 4 hours. The mixture was extracted with ethyl ether (2 × 100 mL), and the combined organic layers were washed successively with saturated aqueous NaHCO₃ (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure at low temperature to give a solution of alcohol **11-OH** in ethyl ether, which was directly used in the next step. ¹H NMR (500 MHz, CDCl₃) δ 3.40 (dd, *J* = 7.1, 2.5 Hz, 2H), 1.64 (s, 1H), 1.27–1.19 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H), 0.84–0.75 (m, 1H), 0.59–0.50 (m, 1H), 0.35–0.29 (m, 1H), 0.29–0.24 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 67.25, 26.70, 21.08, 19.09, 13.74, 9.80.

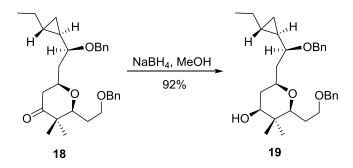


To a solution of alcohol **11-OH** (30 mmol) in ethyl ether (100 mL) was added NaHCO₃ (7.6 g, 90 mmol), TEMPO (468 mg, 3.0 mmol). The reaction mixture was cooled to 0 °C and TCCA (7.7 g, 33 mmol) was added. After being stirred for an additional hour at 0 °C, the reaction mixture was filtered through a pad of silica gel. The filtrate was washed successively with saturated aqueous NaHCO₃ (30 mL), NH₄Cl (30 mL), brine (30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure at low temperature to afford the crude aldehyde, which was used in the next step without further purification.

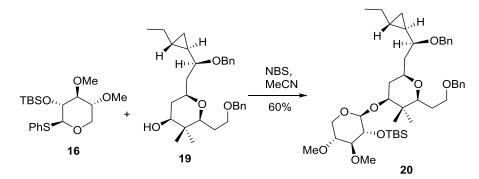
A solution of salt-free (-)-*B*-allyl bis(isopinocampheyl)borane (35 mmol) in Et₂O (50 mL) was cooled to -82 °C. A solution of above fresh prepared aldehyde in Et₂O (30 mL) was cooled to -78 °C and added via cannula over 30 min to the allylboron reagent while maintaining the reaction temperature below -80 °C. After being stirred at -82 °C for 3 hours, the reaction was slowly warmed to room temperature over 2 hours. A solution of 3 N NaOH (40 mL) and H₂O₂ (30%, 80 mL) was added dropwise over 30 min. The mixture was stirred for 18 hours at room temperature. The product was extracted with diethyl ether (2 × 200 ml). The combined organic layers were washed successively with saturated aqueous NaHCO₃ (50 mL), NH₄Cl (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure at low temperature to give rise to a crude oil consisting of the desired allylation product and isopinocampheol. The product mixture was dissolved in THF (300 mL) and cooled to 0 °C. Sodium


hydride (6.0 g, 150 mmol, 60% suspension in mineral oil) was added in portions to control the exothermic release of hydrogen. BnBr (16 mL, 135 mmol) and tetrabutylammonium iodide (3.5 g, 9.5 mmol) was then added and the mixture was gradually warmed to room temperature (the release of hydrogen was controlled by placing of the reaction vessel in an ice bath). The mixture was stirred at ambient temperature for 24 hours, then re-cooled to 0 °C and quenched by slow addition of MeOH (20 mL), followed by H₂O (50 mL). The mixture was extracted with Et₂O (2 × 300 mL). The combined organic layers were washed successively with saturated aqueous NH₄Cl (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether =95/5) to afford an inseparable mixture of desired benzyl ether and isopinocampheol-benzyl ether as a light yellow oil.

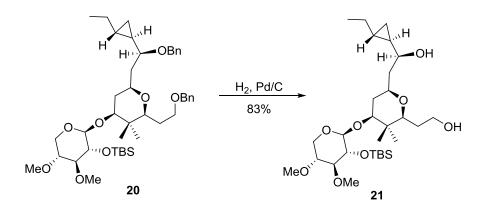
To a solution of above mixture in 60 mL of H₂O and 200 mL of acetone was added with 2,6-lutidine (7.0 mL, 60 mmol), osmium tetroxide (50 mL, 1 mmol, 0.02 M in *t*-BuOH) and sodium periodate (8.5 g, 40 mmol) at room temperature. After being stirred for 3 hours, the mixture was filtered, eluting with 50 mL of EtOAc and then concentrated. The slurry was then extracted with EtOAc (2 × 200 mL) and the combined organic layers were washed successively with saturated aqueous NaHCO₃ (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether = 90/15) to yield compound **12** (1.84 g, 26 % for 5 steps) as a colorless oil. $[\alpha]_D^{20}$ = -34.0 (*c* 2.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 9.81 (t, *J* = 2.4 Hz, 1H), 7.38 – 7.24 (m, 5H), 4.79 (d, *J* = 11.6 Hz, 1H), 4.54 (d, *J* = 11.6 Hz, 1H), 3.29 (td, *J* = 8.5, 4.2 Hz, 1H), 2.77 (ddd, *J* = 15.9, 8.2, 2.8 Hz, 1H), 2.63 (ddd, *J* = 15.9, 4.1, 2.0 Hz, 1H), 1.45 – 1.33 (m, 1H), 1.33 – 1.22 (m, 1H), 1.03 (t, *J* = 7.4 Hz, 3H), 0.89 – 0.77 (m, 1H), 0.73 (ddd, *J* = 13.4, 8.9, 4.8 Hz, 1H), 0.34 – 0.21 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 201.61, 138.56, 128.47, 127.69, 127.67, 78.42, 70.90, 49.47, 26.71, 22.30, 21.43, 13.51, 8.03; HRMS (ESI) *m/z* calcd for C₁₅H₂₀O₂Na [M + Na]⁺: 255.1356, found: 255.1355.



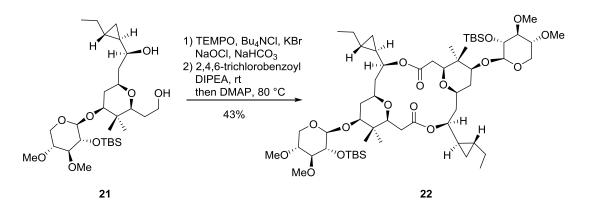
To a -78 °C ether solution of aldehyde **12** (19 mg, 82 µmol) and flame-dried powdered 4Å molecular sieves (30 mg), was added allylsilane **9** (20 mg, 62 µmol) in diethyl ether (2 mL). After being stirred for 30 min, TMSOTf (17 µL, 94 µmol) was added slowly and allowed to stir rapidly for an additional hour, then quenched with cooled saturated aqueous solution of NaHCO₃ (0.5 mL). The biphasic mixture was extracted with EtOAc (2 × 25 mL), and the combined organic layers were washed successively with saturated aqueous NH₄Cl (10 mL), brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether =95/5) to yield compound **17** (22 mg, 76%) as a colorless oil. [α]_D²⁰= -58.4 (*c* 1.0, DCM); ¹H NMR (500 MHz, CDCl₃); δ 7.37 – 7.24 (m, 10H), 4.73 (d, *J* = 11.7 Hz, 1H), 4.71 (s, 1H), 4.65 (s, 1H), 4.51 (d, *J* =


11.7 Hz, 1H), 4.47 (s, 2H), 3.59 - 3.53 (m, 1H), 3.53 - 3.46 (m, 2H), 3.12 (dd, J = 10.7, 1.7 Hz, 1H), 2.90 (dt, J = 8.5, 6.7 Hz, 1H), 2.24 - 2.16 (m, 1H), 2.08 - 2.00 (m, 2H), 1.85 (ddd, J = 9.5, 7.9, 3.9 Hz, 1H), 1.68 (ddd, J = 9.1, 6.5, 2.1 Hz, 2H), 1.44 - 1.34 (m, 1H), 1.27 - 1.18 (m, 2H), 1.06 - 0.97 (m, 9H), 0.74 - 0.66 (m, 1H), 0.63 - 0.56 (m, 1H), 0.28 - 0.20 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 153.97, 139.32, 138.76, 128.41, 128.38, 127.73, 127.71, 127.53, 127.43, 106.09, 81.59, 79.50, 76.10, 73.10, 70.54, 68.33, 42.37, 39.68, 39.48, 30.23, 26.90, 22.58, 22.47, 20.59, 20.14, 13.65, 8.36; HRMS (ESI) m/z calcd for C₃₁H₄₂O₃Na [M + Na]⁺: 485.3026, found: 485.3027.

To a solution of compound 17 (193 mg, 0.42 mmol) in 6.0 mL of H₂O and 20.0 mL of acetone was added osmium tetroxide (0.5 mL, 0.05 mmol, 0.1M in t-BuOH) and N-methylmorpholine Noxide (467 mg, 1.67 mmol). After being stirred for 24 hours, a solution of sodium periodate (450 mg, 2.10 mmol) in 10 mL of H_2O was added, and the yellow solution was stirred for additional 3 hours. The mixture was filtered, eluted with 50 mL of EtOAc and then concentrated. The slurry was extracted with EtOAc (2×50 mL) and the combined organic layers were washed successively with saturated aqueous NaHCO₃ (30 mL), brine (30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether = 85/15) to afford ketone 18 (164 mg, 85%) as a colorless oil. $[\alpha]_D^{20} = -87.4$ (c 1.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.25 (m, 10H), 4.74 (d, J = 11.6 Hz, 1H), 4.45 (s, 2H), 4.45 (d, J = 11.4 Hz, 1H), 3.86 - 3.75 (m, 1H), 3.61 - 3.47(m, 2H), 3.39 (dd, J = 8.6, 3.8 Hz, 1H), 2.87 (dt, J = 8.6, 6.5 Hz, 1H), 2.47 (dd, J = 14.2, 11.9 Hz, 1H), 2.24 (dd, J = 14.2, 2.6 Hz, 1H), 2.10 (dt, J = 13.9, 7.0 Hz, 1H), 1.82 – 1.75 (m, 2H), 1.75 – 1.65 (m, 1H), 1.42 – 1.31 (m, 1H), 1.26 – 1.15 (m, 1H), 1.08 (s, 3H), 1.02 – 0.96 (m, 6H), 0.73 – $0.65 \text{ (m, 1H)}, 0.65 - 0.51 \text{ (m, 1H)}, 0.28 - 0.15 \text{ (m, 2H)}; {}^{13}\text{C NMR} (125 \text{ MHz, CDCl}_3) \delta 211.80,$ 139.04, 138.56, 128.46, 127.69, 127.66, 127.64, 127.56, 80.63, 79.28, 74.59, 73.12, 70.67, 67.58, 49.15, 44.70, 42.50, 29.87, 26.83, 22.35, 20.40, 19.40, 18.91, 13.62, 8.27; HRMS (ESI) m/z calcd for C₃₀H₄₀NaO₄ [M + Na]⁺: 487.2819, found: 487.2815.

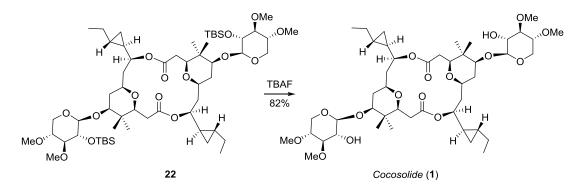


To a -40 °C solution of ketone 18 (41 mg, 88 µmol) in MeOH (1.5 mL) was added NaBH₄ (10 mg, 0.26 mmol). The reaction was stirred at this temperature for 30 min. then quenched with saturated aqueous NH₄Cl (10 mL). The biphasic mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed successively with saturated aqueous NaHCO₃ (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 3/1) to yield compound **19** (39 mg, 92%) as a colorless oil. $[\alpha]_{D}^{20} = -49.1$ (c 1.0, DCM); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.38 - 7.27 \text{ (m, 10H)}, 4.75 \text{ (d, } J = 11.6 \text{ Hz}, 1\text{H}), 4.46 \text{ (d, } J = 11.5 \text{ Hz}, 3\text{H}),$ 3.60 (dd, J = 11.2, 5.6 Hz, 1H), 3.58 - 3.53 (m, 1H), 3.53 - 3.46 (m, 1H), 3.39 (dd, J = 11.4, 4.3)Hz, 1H), 3.08 (d, J = 9.5 Hz, 1H), 2.88 (dd, J = 15.2, 6.7 Hz, 1H), 2.02 (dt, J = 14.1, 7.2 Hz, 1H), 1.87 – 1.78 (m, 1H), 1.68 – 1.63 (m, 2H), 1.44 – 1.34 (m, 2H), 1.32 (d, J = 12.0 Hz, 1H), 1.25 (dt, J = 14.0, 7.6 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H), 0.93 (s, 3H), 0.83 (s, 3H), 0.71 (dd, J = 12.3, 5.7Hz, 1H), 0.64 - 0.56 (m, 1H), 0.28 - 0.21 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 139.29, 138.74, 128.43, 128.39, 127.75, 127.70, 127.56, 127.46, 80.28, 79.54, 76.04, 73.08, 73.04, 70.62, 68.13, 42.04, 38.85, 37.13, 29.53, 26.90, 22.42, 20.24, 13.65, 12.55, 8.29; HRMS (ESI) m/z calcd for $C_{30}H_{42}O_4Na [M + Na]^+$: 489.2975, found: 489.2974.

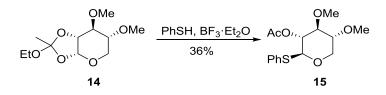


The suspended solution of compound **16** (16 mg, 42 µmol) and flame-dried, powdered 4Å molecular sieves (90 mg) in dry acetonitrile (1 mL) was stirred under nitrogen at room temperature for 1.5 hours. To this solution at -25 °C, was added a solution of *N*-bromosuccinimide (7.5 mg, 42 µmol) in dry acetonitrile (0.5 mL). 10 min later a solution of alcohol **19** (10 mg, 21 µmol) in dry acetonitrile (0.5 mL) was added. The reaction mixture was stirred for 30 min at -25 °C before it was allowed to warm to room temperature over 3 hours. The reaction was quenched with saturated aqueous NaHCO₃ (10 mL). The biphasic mixture was extracted with EtOAc (2 × 50 mL), and the combined organic layers were washed successively with saturated aqueous NH₄Cl (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to yield a crude product consisting a mixture of alpha:beta (3:5) isomers. The mixture

was further purified by flash column chromatography on silica gel (hexanes/EtOAc = 3/1) to yield 9.4 mg of beta isomer (**20**) (60% yield) as a colorless oil. $[\alpha]_D^{20} = -51.8$ (*c* 1.0, DCM); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 10H), 4.74 (d, *J* = 11.5 Hz, 1H), 4.46 (s, 2H), 4.45 (d, *J* = 11.6 Hz, 1H), 4.23 (d, *J* = 7.3 Hz, 1H), 3.93 (dd, *J* = 11.5, 5.2 Hz, 1H), 3.63 – 3.57 (m, 2H), 3.55 (s, 3H), 3.54 – 3.51 (m, 1H), 3.51 – 3.45 (m, 2H), 3.44 (s, 3H), 3.41 – 3.34 (m, 1H), 3.30 – 3.22 (m, 2H), 3.09 (dd, *J* = 21.0, 10.9 Hz, 2H), 3.00 (t, *J* = 8.7 Hz, 1H), 2.92 – 2.86 (m, 1H), 2.05 – 1.98 (m, 1H), 1.88 – 1.82 (m, 1H), 1.82 – 1.75 (m, 1H), 1.68 – 1.60 (m, 1H), 1.42 – 1.33 (m, 1H), 1.25 – 1.17 (m, 1H), 1.01 (t, *J* = 7.4 Hz, 3H), 0.95 (s, 3H), 0.92 (s, 9H), 0.91 – 0.87 (m, 5H), 0.72 – 0.65 (m, 1H), 0.62 – 0.55 (m, 1H), 0.28 – 0.22 (m, 2H), 0.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.23, 138.61, 128.32, 128.29, 127.61, 127.44, 127.34, 106.17, 86.26, 84.56, 80.68, 80.44, 79.96, 77.33, 77.01, 76.69, 74.31, 72.95, 70.71, 67.92, 63.13, 61.01, 58.34, 41.97, 38.97, 36.66, 29.69, 29.20, 26.82, 26.08, 22.32, 20.06, 18.11, 13.61, 13.49, 8.23, -3.70, -4.11; HRMS (ESI) *m*/z calcd for C₄₃H₆₈O₈NaSi [(M + Na]⁺: 763.4576, found: 763.4579.

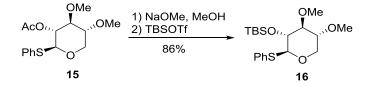


To a solution of Bn ether 20 (21 mg, 28 µmol) in MeOH (3 mL) was added 10% Pd/C (5 mg). The reaction flask was evacuated and purged with hydrogen three times. The reaction mixture was stirred under a H₂ atmosphere at ambient temperature for 2 hours. The flask was then evacuated and purged with nitrogen three times and the catalyst was removed by filtration through Celite. The filtrate was concentrated and the crude product purified by flash column chromatography on silica gel (hexanes/EtOAc = 2/1) to yield compound **21** (13 mg, 83%) as a colorless oil. $[\alpha]_D^{20} = -$ 25.8 (c 1.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 4.21 (d, J = 7.2 Hz, 1H), 3.95 (dd, J = 11.4, 5.2 Hz, 1H), 3.71 (dd, J = 10.4, 4.4 Hz, 2H), 3.60 (dd, J = 11.6, 8.8 Hz, 1H), 3.53 (s, 3H), 3.43 (s, 3H), 3.35 (dd, J = 8.7, 7.3 Hz, 1H), 3.24 (ddd, J = 11.8, 8.2, 4.9 Hz, 2H), 3.18 - 3.13 (m, 1H), 3.10 (dd, Hz, 2H), 3.18 - 3.13 (m, 1H), 3.10 (dd, Hz, 2H), 3.18 - 3.18 (m, 1H), 3.10 (dd, Hz, 2H), 3.18 (m, 1H), 3.18J = 11.4, 10.1 Hz, 2H, 2.98 (t, J = 8.7 Hz, 1H), 2.58 (s, 2H), 1.85 – 1.75 (m, 2H), 1.65 (dd, J = 1.00 Hz) 11.3, 6.4 Hz, 3H), 1.29 - 1.16 (m, 3H), 0.93 (dd, J = 9.4, 5.1 Hz, 6H), 0.90 (d, J = 1.7 Hz, 12H), 0.65 (dd, J = 13.3, 8.1 Hz, 1H), 0.60 (dt, J = 12.9, 4.2 Hz, 1H), 0.33 - 0.27 (m, 1H), 0.27 - 0.21 (m, 2H), 0.27(m, 1H), 0.10 (s, 6H); 13 C NMR (125 MHz, CDCl₃) δ 106.24, 86.27, 83.95, 80.81, 76.35, 75.42, 74.42, 63.22, 61.70, 60.96, 58.36, 42.78, 39.06, 37.06, 31.08, 26.80, 26.17, 25.60, 22.44, 18.88, 18.19, 13.74, 13.62, 9.32, 0.06, -3.65, -4.01; HRMS (ESI) m/z calcd for C₂₉H₅₆NaO₈Si [M + Na]⁺: 583.3637, found: 583.3534.

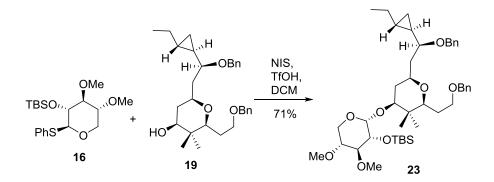


To a solution of the diol **21** (13 mg, 23 µmol) in CH₂Cl₂ (300 µL) was added TEMPO (0.2 mg, 1.2 µmol) and saturated NaHCO₃ (130 µL). KBr (50 µL, 2.5 µmol, 0.05 M aqueous solution) and Bu₄NCl (30 µL, 1.5 µmol, 0.05 M aqueous solution) were added subsequently and the mixture was cooled to 0 °C. To the vigorously stirring biphasic solution was added a stock solution of saturated NaHCO₃ (33 µL), brine (61 µL) and bleach (40 µL, 0.06 mmol, 1.5 M) dropwise over 45 min. The mixture was allowed to stir for an additional 30 min at 0 °C upon completion of the addition. The solution was then diluted with H₂O (2 mL) and CH₂Cl₂ (2 mL). The diluted mixture was acidified with 10% citric acid (4-10 drops) to pH 3-4. The biphasic mixture was extracted with EtOAc (2 × 50 mL), and the combined organic layers were washed with brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give rise to the corresponding carboxylic acid, which was employed in the next step of reaction without further purification.

To the above acid in dry toluene (2 ml) was added DIPEA (N,N-diisopropylethylamine) (30 μ L, 0.18 mmol) and 2,4,6-trichlorobenzoyl chloride (20 µL, 0.13 mmol) dropwise. The reaction mixture was stirred at room temperature for 2 hours, then the mixture was added dropwise over 3 hours to a stirred solution of DMAP (4-dimethylaminopyridine) (35 mg, 0.29 mmol) in toluene (10 mL) at 80 °C, the reaction was allowed to stir for another 3 hours before it was quenched with saturated aqueous NH₄Cl (15 mL). The biphasic mixture was extracted with EtOAc (2×70 mL), and the combined organic layers were washed successively with saturated aqueous NaHCO₃ (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 3/1) to yield compound 22 (5.5 mg, 43%) as a colorless oil. $[\alpha]_D^{20} = -67.6$ (c 0.2, DCM); ¹H NMR (500 MHz, CD₃CN) δ 4.30 (t, J = 8.4 Hz, 2H), 4.24 (d, J = 7.2 Hz, 2H), 3.90 (dd, J = 11.3, 5.0 Hz, 2H), 3.47 (s, 6H), 3.40 - 3.38 (m, 2H), 3.37 (s, 6H), 3.34 (dd, J = 11.6, 4.8 Hz, 2H), 3.28(dd, J = 8.6, 7.2 Hz, 2H), 3.22 – 3.16 (m, 2H), 3.11 (dd, J = 11.2, 9.7 Hz, 2H), 2.95 (t, J = 8.5 Hz, 2H), 2.66 (s, 2H), 2.37 (dd, J = 17.3, 1.7 Hz, 2H), 2.08 – 2.05 (m, 2H), 1.80 (dd, J = 4.9, 2.5 Hz, 2H), 1.79 - 1.75 (m, 2H), 1.66 (dd, J = 14.5, 2.9 Hz, 2H), 1.39 - 1.32 (m, 4H), 0.93 (d, J = 7.6 Hz, 2H), 0.90 (s, 18H), 0.87 (s, 6H), 0.85 (t, J = 7.0 Hz, 6H), 0.81 (s, 6H), 0.72 (dd, J = 11.5, 6.9 Hz, 2H), 0.69 - 0.64 (m, 2H), 0.40 - 0.32 (m, 2H), 0.26 - 0.18 (m, 2H), 0.10 (s, 6H), 0.09 (s, 6H); ${}^{13}C$ NMR (125 MHz, CD₃CN) δ 170.94, 108.71, 105.74, 89.27, 85.95, 84.05, 83.39, 81.51, 80.62, 80.27, 79.95, 77.24, 76.86, 76.60, 75.78, 74.56, 74.34, 66.23, 62.71, 61.46, 60.11, 57.62, 57.44, 56.42, 40.72, 39.14, 38.51, 38.15, 36.89, 36.08, 35.11, 27.12, 26.37, 26.27, 25.61, 24.40, 23.98, 21.95, 21.57, 20.41, 19.77, 18.81, 17.84, 14.61, 12.97, 9.29, 8.97, 8.27, -4.32, -4.63; HRMS (ESI) m/z calcd for C₅₈H₁₀₄NaO₁₆Si₂ [M + Na]⁺: 1135.6755, found: 1135.6753.

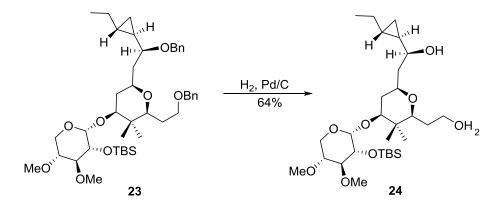


To a stirred solution of silvl ether 22 (2.0 mg, 1.8 µmol) in THF (1.5 mL) at 0 °C was added TBAF (300 µL, 1 M in THF, 300 µmol), immediately producing a yellow solution. The mixture was stirred for 3 hours, then the reaction mixture was poured into a mixture of EtOAc (20 mL), H₂O (10 mL). The layers were separated and the aqueous layer was further extracted with EtOAc (2 \times 20 mL). The combined organic extracts were washed successively with saturated aqueous NaHCO₃ (15 mL), NH₄Cl (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was further purified by flash column chromatography on silica gel (hexanes/EtOAc = 1/1) to yield cocosolide (1) (1.3 mg, 82%) as a colorless oil. $[\alpha]_D^{20} = -55.5$ (c 0.4, DCM); ¹H NMR (500 MHz, CD₃CN) δ 4.30 (t, J = 8.3 Hz, 2H), 4.23 (d, J = 7.3 Hz, 2H), 3.90 (dd, J = 11.3, 4.8 Hz, 2H), 3.50 (s, 6H), 3.40 (dd, J = 8.2, 1.5 Hz, 2H), 3.39 - 3.38 (m, 2H), 3.38 (s, 6H), 3.34 (dd, J = 11.6, 4.9 Hz, 6H), 3.32 (d, J = 4.7 Hz, 6H), 3.21 - 3.18 (m, 2H), 3.18 - 3.15 (m, 2H), 3.10 (dd, J = 11.2, 9.7 Hz, 2H), 3.02 (t, J = 8.5 Hz, 2H), 2.39 (dd, J = 17.2, 1.7 Hz, 2H), 2.07 (dd, J = 17.2, 8.3 Hz, 2H), 1.84 - 1.81 (m, 2H), 1.81 - 1.78 (m, 2H), 1.69 – 1.64 (m, 2H), 1.40 – 1.36 (m, 2H), 1.35 – 1.31 (m, 2H), 0.93 – 0.90 (m, 2H), 0.88 (s, 6H), 0.87 - 0.84 (m, 6H), 0.80 (s, 6H), 0.75 - 0.70 (m, 2H), 0.70 - 0.66 (m, 2H), 0.37 (dt, J =8.7, 4.8 Hz, 2H), 0.24 (dt, J = 8.5, 5.0 Hz, 2H); ¹³C NMR (125 MHz, CD₃CN) δ 171.79, 106.37, 85.42, 85.21, 80.64, 80.00, 77.60, 76.36, 74.19, 63.36, 60.29, 58.44, 41.52, 39.26, 37.49, 35.98, 27.18, 24.73, 22.23, 20.60, 13.78, 13.48, 9.78; HRMS (ESI) m/z calcd for C₄₆H₇₆NaO₁₆ [M + Na]⁺: 907.5026, found: 907.5023.

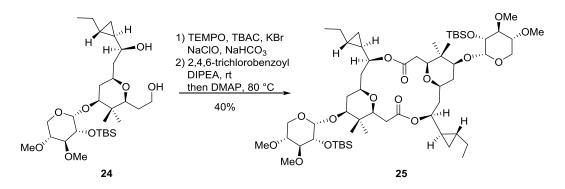


To a -45 °C solution of compound **14** (1.3g, 5.2 mmol) in CH₂Cl₂ (50 mL) was added dropwise BF₃·Et₂O (980 µL, 8 mmol), followed by the addition of PhSH (650 µL, 6.3 mmol). The reaction mixture was allowed to stir for an additional 2 hours before it was quenched by the addition of Et₃N (5 mL). The mixture was poured carefully into an Erlenmeyer flask and then partitioned between and then partitioned between H₂O (50 mL) and EtOAc (150 mL). The layers were separated and the aqueous layer was extracted with EtOAc (100 mL). The combined organic layers were washed successively with saturated aqueous NaHCO₃ (30 mL), NH₄Cl (30 mL), brine (30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 1/1) to yield

compound **15** (650 mg, 36%) as a colorless oil. $[\alpha]_D^{20} = -29.9$ (*c* 1.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.38 (m, 2H), 7.36 – 7.15 (m, 3H), 4.93 (t, *J* = 7.9 Hz, 1H), 4.76 (d, *J* = 8.1 Hz, 1H), 4.32 – 4.08 (m, 1H), 3.53 (s, 3H), 3.47 (s, 3H), 3.34 (ddd, *J* = 24.0, 14.0, 5.7 Hz, 3H), 2.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.72, 133.78, 131.96, 129.01, 127.71, 86.75, 82.61, 78.30, 71.03, 65.69, 59.92, 58.61, 21.15; HRMS (ESI) *m*/*z* calcd for C₁₅H₂₀NaO₅S [M + Na]⁺: 335.0924, found: 335.0922.

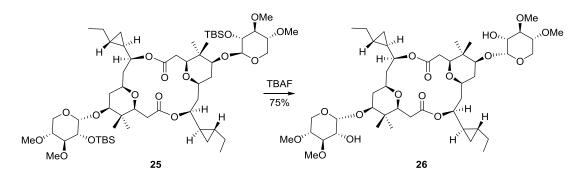


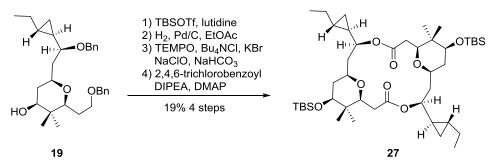
To a solution of compound 15 (142 mg, 0.45 mmol) in MeOH (5 mL) was added a catalytic amount of sodium methoxide at room temperature. The reaction mixture was stirred for an hour, before it was concentrated under reduced pressure. The residue was dissolved in dry CH₂Cl₂ (15 mL). To this solution at 0 °C was added 2,6-lutidine (0.18 mL, 1.5 mmol), followed by the addition of TBStriflate (0.22 mL, 1.0 mmol). After being stirred for an additional hour, the reaction was quenched with saturated aqueous NaHCO₃ (10 mL), and the biphasic mixture was extracted with EtOAc (2 \times 30 mL). The combined organic layers were washed successively with saturated aqueous NH₄Cl (10 mL), brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/ethyl ether = 95/5) to yield compound **16** (150 mg, 86%) as a colorless oil. $[\alpha]_{D}^{20} = -42.7$ (*c* 1.0, DCM); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.38 (m, 2H), 7.36 – 7.15 (m, 3H), 4.57 (d, J = 9.1 Hz, 1H), 4.13 - 4.04 (m, 1H), 3.58 (s, 2H), 3.51 - 3.47 (m, 1H), 3.45 (d, J = 6.3 Hz, 3H), 3.35 - 3.28 (m, 1H), 3.17 (dd, J = 11.4, 9.9 Hz, 1H), 3.08 (t, J = 8.4 Hz, 1H), 0.95 (s, 9H), 0.19 (s, 3H), 0.14 (d, J) = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.77, 131.24, 128.87, 127.16, 90.38, 87.12, 80.30, 73.20, 66.55, 60.93, 58.27, 26.10, 18.31, -3.89, -4.34; HRMS (ESI) m/z calcd for C19H32NaO2Si $[M + Na]^+$: 407.1683, found: 407.1684.


The suspended solution of compound **16** (12 mg, 31 μ mol) and flame-dried powdered 4Å molecular sieves (60 mg) in dry dichloromethane (1 mL) was stirred under nitrogen at room temperature for an hour and then cooled to– 78 °C. To this solution at –78 °C, was added a solution of *N*-iodosuccinimide (7 mg, 31 μ mol) in dry dichloromethane (0.5 mL), followed by the addition

of TfOH (0.30 µL, 3.4 µmol). 10 min later a solution of alcohol 19 (10 mg, 21 µmol) in dry dichloromethane (0.5 mL) was added. The reaction mixture was stirred for 0.5 hour at -78 °C before it was allowed to warm to room temperature over 2 hours. The reaction mixture was quenched by the addition of triethylamine (2 mL) and then partitioned between H₂O (15 mL) and EtOAc (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (50 mL). The combined organic layers were washed successively with saturated aqueous NaHCO₃(10 mL), NH₄Cl (10 mL), brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 10/1) to yield compound 23 (11 mg, 71%) as a colorless oil. $[\alpha]_D^{20} = 3.3$ (c 1.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.22 (m, 10H), 4.73 (d, J = 11.7 Hz, 1H), 4.69 (d, J = 3.7 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.47 (s, 2H), 3.68 (dd, J = 11.0, 5.7 Hz, 1H), 3.58 (s, 3H), $3.54 \pmod{J} = 12.3$, 8.5, 3.0 Hz, 3H), $3.49 \pmod{s}$, 3H), $3.48 - 3.42 \pmod{m}$, 1H), $3.36 \pmod{J} = 11.4$, 4.4 Hz, 1H), 3.30 (t, J = 9.1 Hz, 1H), 3.22 (ddd, J = 10.6, 8.9, 5.8 Hz, 1H), 3.10 (d, J = 9.3 Hz, 1H), 2.85 (dd, J = 15.3, 6.7 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.89 – 1.80 (m, 1H), 1.77 – 1.71 (m, 1H), 1.68 – 1.62 (m, 1H), 1.38 (dt, J = 21.2, 7.0 Hz, 1H), 1.21 (dd, J = 14.5, 9.2 Hz, 2H), 1.00 (dd, J = 14.2, 6.8 Hz, 6H), 0.90 (d, J = 4.8 Hz, 3H), 0.89 - 0.85 (m, 9H), 0.72 - 0.64 (m, 1H), 0.61 -0.54 (m, 1H), 0.24 (ddd, J = 8.4, 6.6, 4.2 Hz, 2H), 0.08 (s, 3H), 0.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) § 139.28, 138.78, 128.41, 128.39, 127.73, 127.67, 127.52, 127.47, 94.90, 83.35, 80.55, 80.51, 79.46, 79.02, 73.16, 73.05, 72.73, 70.49, 68.15, 61.27, 60.28, 58.91, 42.41, 38.50, 32.61, 29.78, 29.50, 26.88, 25.92, 23.31, 22.35, 20.12, 18.08, 13.63, 13.43, 8.28, -4.57, -4.62; HRMS (ESI) m/z calcd for C₄₃H₆₈O₈NaSi [M + Na]⁺: 763.4576, found: 763.4579.

To a solution of Bn ether **23** (72 mg, 97 µmol) in MeOH (6 mL) was added 10% Pd/C (10 mg). The reaction flask was evacuated and purged with hydrogen three times. The reaction mixture was stirred under a H₂ atmosphere at ambient temperature for 2 hours. The flask was then evacuated and purged with nitrogen three times and the catalyst was removed by filtration through Celite. The filtrate was concentrated and the crude product purified by flash column chromatography on silica gel (hexanes/EtOAc = 2/1) to yield compound **24** (35 mg, 64%) as a colorless oil. $[\alpha]_D^{20}$ = 33.6 (*c* 1.0, DCM); ¹H NMR (500 MHz, CDCl₃) δ 4.73 (d, *J* = 3.5 Hz, 1H), 3.79 – 3.70 (m, 2H), 3.68 (dd, *J* = 11.0, 5.7 Hz, 1H), 3.58 (s, 3H), 3.54 – 3.47 (m, 2H), 3.49 (s, 3H), 3.37 (dd, *J* = 11.3, 4.3 Hz, 1H), 3.30 (t, *J* = 9.1 Hz, 1H), 3.25 – 3.16 (m, 2H), 3.15 – 3.05 (m, 1H), 1.88 – 1.80 (m, 2H), 1.74 – 1.64 (m, 4H), 1.60 (br, 3H), 1.39 – 1.31 (m, 2H), 1.24 – 1.19 (m, 1H), 0.98 (s, 3H), 0.97 – 0.93 (m, 6H), 0.91 (s, 9H), 0.73 – 0.65 (m, 1H), 0.65 – 0.58 (m, 1H), 0.35 – 0.31 (m, 1H), 0.31 – 0.23 (m, 1H), 0.10 (s, 3H), 0.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 95.04, 83.87, 83.33,

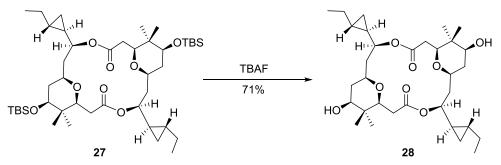

80.48, 75.91, 73.16, 61.72, 61.28, 60.35, 58.95, 42.93, 38.54, 32.81, 29.77, 26.79, 25.89, 25.58, 23.22, 18.89, 18.09, 13.72, 13.46, 9.34, -4.56, -4.62; HRMS (ESI) *m/z* calcd for C₂₉H₅₆NaO₈Si [M + Na]⁺: 583.3637, found: 583.3534.


To a solution of the diol **24** (35 mg, 62 µmol) in CH₂Cl₂ (0.7 mL) was added TEMPO (0.5 mg, 3.2 µmol) and saturated NaHCO₃ (380 µL). KBr (125 µL, 6.2 µmol, 0.05 M aqueous solution) and Bu₄NCl (100 µL, 5.0 µmol, 0.05 M aqueous solution) were added subsequently and the mixture was cooled to 0 °C. To the vigorously stirring biphasic solution was added a stock solution of saturated NaHCO₃ (90 µL), brine (165 µL) and bleach (108 µL, 0.16 mmol, 1.5 M) dropwise over 70 min. The mixture was allowed to stir for an additional 30 min at 0 °C upon completion of the addition. The solution was then diluted with H₂O (2 mL) and CH₂Cl₂ (2 mL). The diluted mixture was acidified with 10% citric acid (4-10 drops) to pH 3-4. The biphasic mixture was extracted with EtOAc (2×50 mL), and the combined organic layers were washed with brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give rise to the corresponding carboxylic acid (22 mg, 38 µmol), which was employed in the next step of reaction without further purification.

To the above acid (4 mg, 7 µmol) in dry toluene (2 mL) was added DIPEA (N,Ndiisopropylethylamine) (15 µL, 90 µmol) and 2,4,6-trichlorobenzoyl chloride (10 µL, 64 µmol) dropwise. The reaction mixture was stirred at room temperature for 2 hours, then the mixture was added dropwise over 3 hours to a stirred solution of DMAP (4-dimethylaminopyridine) (17 mg, 0.14 mmol) in toluene (10 mL) at 80 °C, the reaction was allowed to stir for another 3 hours before it was quenched with saturated aqueous NH₄Cl (15 mL). The biphasic mixture was extracted with EtOAc (2×70 mL), and the combined organic layers were washed successively with saturated aqueous NaHCO₃(15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 3/1) to yield compound 25 (2.5 mg, 40%) as a colorless oil. $[\alpha]_D^{20} = 29.4$ (c 1.0, DCM); ¹H NMR (500 MHz, CD₃CN) δ 4.74 (d, J = 3.7 Hz, 2H), 4.26 (t, J = 8.5 Hz, 2H), 3.66 (dd, J = 11.0, 5.3 Hz, 2H), 3.49 (d, J = 4.6 Hz, 6H), 3.51 - 3.46 (m, 2H), 3.46 - 3.41 (m, 2H), 3.39 (s, 6H), 3.38 (d, J = 7.5 Hz, 4H), 3.33 - 3.27 (m, 2H), 3.21 - 3.10 (m, 4H), 2.40 (dd, J = 16.2, 1.4 Hz, 2H), 2.09 (s, 2H), 1.95 - 1.85 (m, 4H), 1.68 (dd, J = 13.6, 5.3 Hz, 2H), 1.34 (dt, J = 20.0, 6.5 Hz, 2H), 1.20 – 1.12 (m, 2H), 1.00 – 0.93 (m, 2H), 0.91 (s, 6H), 0.90 (s, 18H), 0.87 (t, *J* = 7.2 Hz, 6H), 0.84 (s, 6H), 0.78 - 0.73 (m, 2H), 0.71 (dd, J = 11.2, 6.1 Hz, 2H), 0.40 - 0.30 (m, 2H), 0.30 - 0.22(m, 2H), 0.08 (s, 6H), 0.05 (s, 6H); ¹³C NMR (125 MHz, CD₃CN) δ 171.36, 95.16, 83.25, 80.42, 80.29, 78.55, 76.44, 74.84, 73.04, 60.46, 60.04, 57.98, 41.18, 38.03, 35.41, 32.83, 26.36, 25.42,

23.68, 22.26, 19.85, 17.81, 12.98, 12.76, 9.06, -5.26, -5.34; HRMS (ESI) m/z calcd for $C_{58}H_{104}NaO_{16}Si_2$ [M + Na]⁺: 1135.6755, found: 1135.6753.

To a stirred solution of silvl ether 25 (2.0 mg, 1.8 µmol) in THF (1 mL) at 0 °C was added TBAF (200 µL, 1 M in THF, 200 µmol), immediately producing a yellow solution. The mixture was stirred for 3 hours, then the reaction mixture was poured into a mixture of EtOAc (20 mL), H₂O (10 mL). The layers were separated and the aqueous layer was further extracted with EtOAc (2 \times 20 mL). The combined organic extracts were washed successively with saturated aqueous NaHCO₃ (15 mL), NH₄Cl (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was further purified by flash column chromatography on silica gel (hexanes/EtOAc = 1/1) to yield compound 26 (1.2 mg, 75%) as a colorless oil. $[\alpha]_D^{20} = 18.0 (c \ 1.0, DCM); {}^{1}H \ NMR (500 \ MHz, CD_3CN) \delta 4.81 (d, J = 3.8 \ Hz, 2H),$ 4.32 (t, J = 8.1 Hz, 2H), 3.69 (dd, J = 11.0, 4.9 Hz, 2H), 3.54 (s, 6H), 3.50 - 3.42 (m, 6H), 3.41 (s, 6H), 3.39 – 3.32 (m, 4H), 3.24 – 3.12 (m, 4H), 2.70 (d, J = 9.0 Hz, 2H), 2.70 (br, 2H), 2.44 (dd, J = 16.8, 1.5 Hz, 2H), 1.92 - 1.84 (m, 4H), 1.73 (dd, J = 14.8, 3.1 Hz, 2H), 1.38 (dd, J = 14.9, 7.6Hz, 4H), 1.00 – 0.94 (m, 2H), 0.93 (s, 6H), 0.91 – 0.85 (m, 12H), 0.75 (dd, *J* = 10.7, 7.9 Hz, 4H), 0.44 - 0.34 (m, 2H), 0.27 (dd, J = 13.5, 4.9 Hz, 2H); ¹³C NMR (125 MHz, CD₃CN) δ 171.12, 95.36, 83.23, 80.15, 79.38, 79.34, 76.64, 75.25, 72.00, 60.21, 59.71, 57.87, 40.88, 37.89, 35.33, 32.80, 29.43, 26.38, 23.84, 22.23, 19.80, 12.98, 12.84, 9.01; HRMS (ESI) m/z calcd for C₄₆H₇₆NaO₁₆ [M + Na]⁺: 907.5026, found: 907.5023.


To a solution of compound **19** (37 mg, 0.08 mmol) and 2,6-lutidine (0.30 mL, 0.24 mmol) in CH_2Cl_2 (1.5 mL), TBS-triflate (0.26 mL, 0.12 mmol) was added at 0 °C. The reaction mixture was stirred for one hour and then quenched by the addition of a saturated aqueous solution of NaHCO₃ (10 mL). The reaction mixture was extracted with EtOAc (2 × 30 mL); and the combined organic layers were washed successively with saturated aqueous solution of NH₄Cl(10 mL), brine (10 mL),

dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexanes/ethyl ether = 85/15) to afford the corresponding TBS silyl ether (25 mg, 54%) as a light yellow oil.

To a solution of TBS silyl ether (25 mg, 0.043 mmol) in EtOAc (1 mL) was added 10% Pd/C (5 mg). The reaction flask was evacuated and purged with hydrogen three times. The reaction mixture was stirred under H₂ atmosphere at ambient temperature for 2 hours. The flask was then evacuated and purged with nitrogen three times and the catalyst was removed by filtration through a pad of Celite. The filtrate was concentrated and the crude product was purified by flash column chromatography on silica gel (hexanes/EtOAc = 3/1) to yield the corresponding diol (17 mg, 99%) as a colorless oil.

To a solution of the diol (17 mg, 0.043 µmol) in CH₂Cl₂ (300 µL) was added TEMPO (0.3 mg, 2 µmol) and saturated NaHCO₃ (115 µL). KBr (10 µL, 5 µmol, 0.05 M aqueous solution) and Bu₄NCl (40 µL, 3.2 µmol, 0.08 M aqueous solution) were added subsequently and the mixture was cooled to 0 °C. To the vigorously stirring biphasic solution was added a stock solution of saturated NaHCO₃ (31 µL), brine (60 µL) and bleach (85 µL, 0.136 mmol, 1.6 M) dropwise over 60 min. The mixture was allowed to stir for an additional 30 min at 0 °C upon completion of the addition. The solution was then diluted with H₂O (2 mL) and CH₂Cl₂ (2 mL). The diluted mixture was acidified with 10% citric acid (4-10 drops) to pH 3-4. The biphasic mixture was extracted with EtOAc (2 × 30 mL), and the combined organic layers were washed with brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give rise to the corresponding carboxylic acid, which was employed in the next step of reaction without further purification.

To the above acid (8 mg, 0.02 mmol) in dry dichloromethane (0.6 ml) was added DIPEA (N,Ndiisopropylethylamine) (40 µL, 0.24 mmol) and 2,4,6-trichlorobenzoyl chloride (20 µL, 0.13 mmol) dropwise. The reaction mixture was stirred at room temperature for 2 hours, then the mixture was added dropwise over 3 hours to a stirred solution of DMAP (4-dimethylaminopyridine) (35 mg, 0.29 mmol) in dry dichloromethane (8 mL) at room temperature, the reaction was allowed to stir for another 10 hours before it was guenched with saturated aqueous NH₄Cl (15 mL). The biphasic mixture was extracted with EtOAc (2×40 mL), and the combined organic layers were washed successively with saturated aqueous NaHCO3 (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 3/1) to yield compound 27 (2.8 mg, 36%) as a colorless oil. $[\alpha]_D^{20}$ = -14.7 (c 0.4, DCM); ¹H NMR (400 MHz, CDCl₃) δ 4.43 (t, J = 9.2 Hz, 2H), 3.44 (d, J = 6.5 Hz, 4H), 3.39 (dd, J = 11.3, 4.9 Hz, 2H), 2.40 (dd, J = 17.4, 1.6 Hz, 1H), 2.24 (dd, J = 17.4, 8.2 Hz, 2H), 1.95 - 1.84 (m, 2H), 1.69 (dd, J = 14.9, 3.5 Hz, 2H), 1.55 (d, J = 14.9, 3.5 Hz, 3.5.0 Hz, 2H), 1.43 – 1.33 (m, 4H), 1.33 – 1.27 (m, 2H), 0.91 – 0.88 (m, 18H), 0.86 (s, 6H), 0.80 (s, 6H), 0.79 (s, 6H), 0.67 (ddd, J = 13.4, 9.0, 4.7 Hz, 2H), 0.41 – 0.31 (m, 2H), 0.26 (dt, J = 9.7, 4.8 Hz, 2H), 0.04 (s, 6H), 0.00 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 79.6, 77.2, 75.7, 75.6, 41.0, 38.8, 38.1, 35.3, 29.7, 26.6, 25.8, 24.3, 22.7, 19.8, 18.0, 13.5, 12.9, 9.6, -3.9, -5.0; HRMS (ESI) m/z calcd for C₄₄H₈₁O₈Si₂ [M + H]⁺: 793.5464, found: 793.5502.

To a stirred solution of silyl ether **27** (2.0 mg, 2.5 µmol) in THF (1 mL) at 0 °C was added TBAF (1 mL, 0.5 mmol, 0.5 M in THF). The reaction mixture was stirred at room temperature for 28 hours, then it was poured into a biphasic mixture solution of EtOAc (20 mL) and H₂O (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic extracts were washed successively with saturated aqueous NaHCO₃ (15 mL), NH₄Cl (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 2/1) to yield compound **28** (1.0 mg, 71%) as a colorless oil. $[\alpha]_D^{20}$ = 5.0 (*c* 0.4, DCM); ¹H NMR (300 MHz, CDCl₃) δ 4.41 (t, *J* = 9.1 Hz, 2H), 3.52 – 3.37 (m, 6H), 2.45 – 2.24 (m, 4H), 2.02 – 1.88 (m, 2H), 1.83 – 1.69 (m, 4H), 1.41 – 1.30 (m, 4H), 1.00 – 0.93 (m, 2H), 0.90 (s, 6H), 0.87 (d, *J* = 6.4 Hz, 6H), 0.82 (s, 6H), 0.74 – 0.63 (m, 2H), 0.40 – 0.31 (m, 2H), 0.31 – 0.22 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 79.9, 77.2, 75.5, 75.3, 41.1, 38.4, 35.1, 26.6, 24.2, 22.2, 19.9, 13.5, 12.5, 9.6; HRMS (ESI) *m*/*z* calcd for C₃₂H₅₃O₈ [M + H]⁺: 565.3735, found: 565.3732.

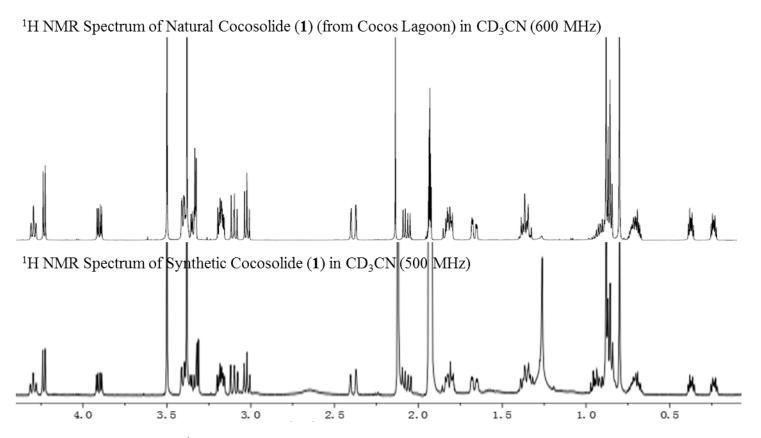
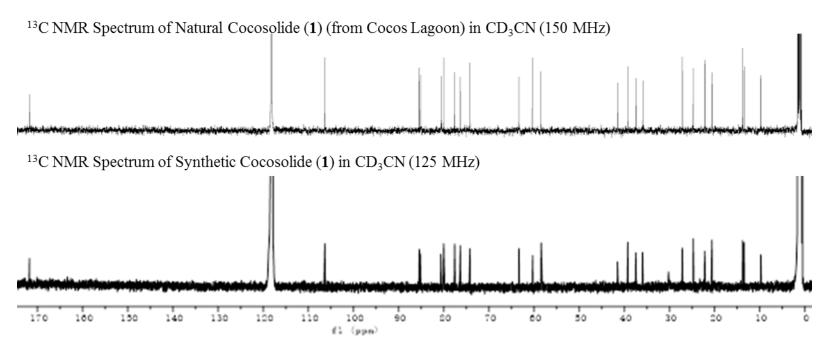
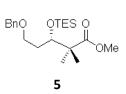
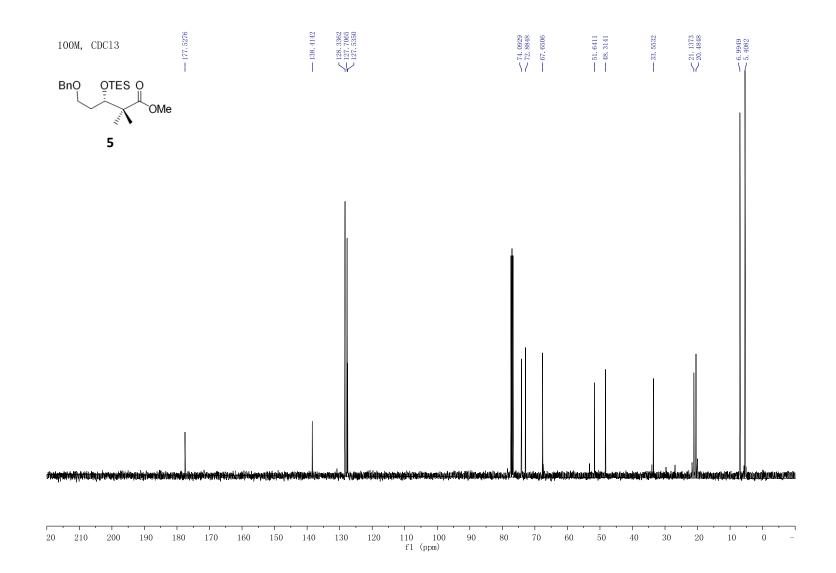
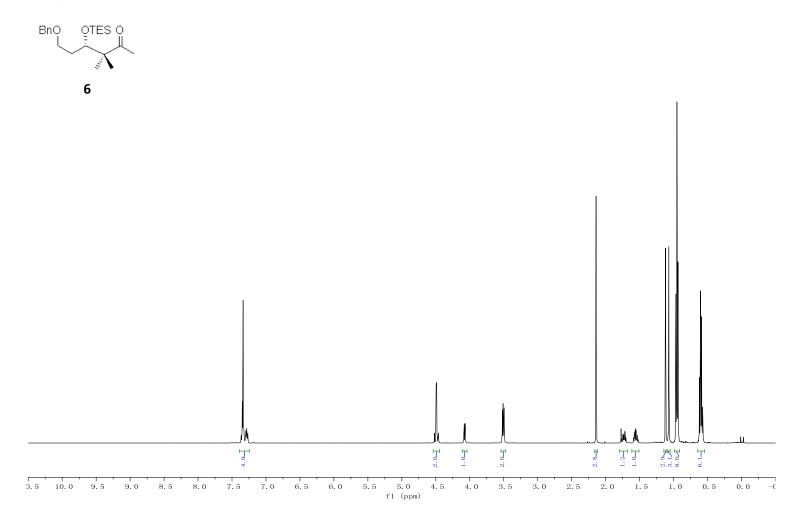
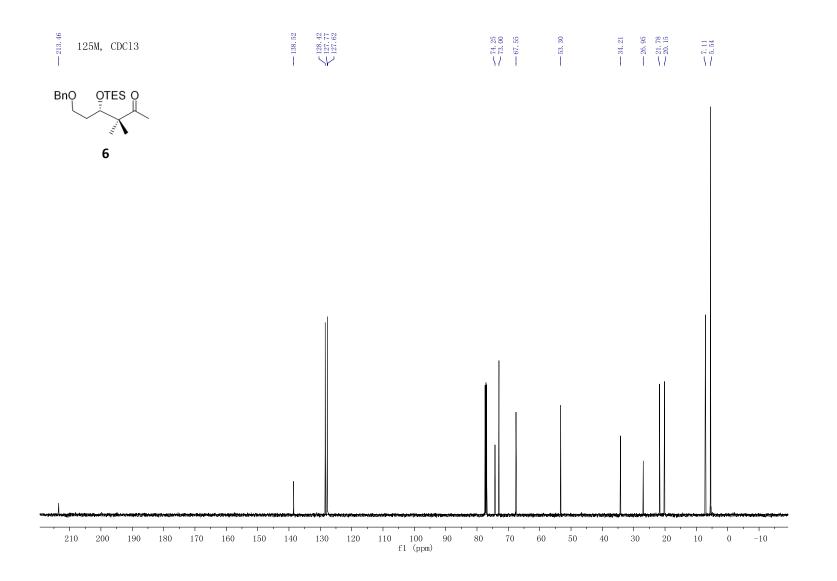
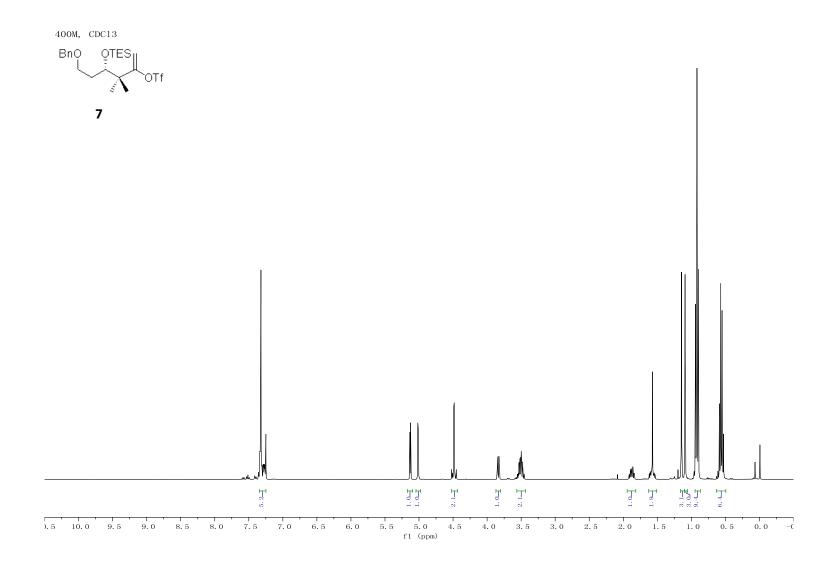


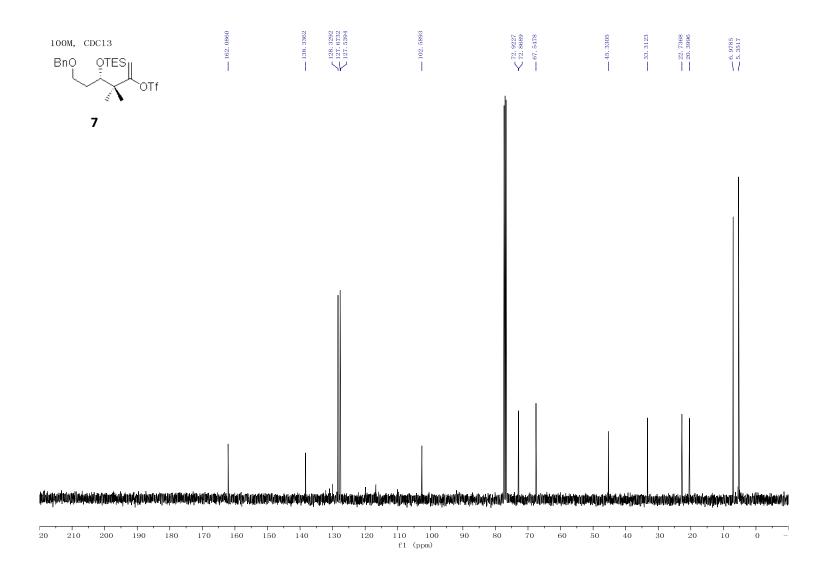
Figure S3. Comparison of ¹H spectrum of natural cocosolide (1) (from Cocos Lagoon) and the synthetic cocosolide (1).

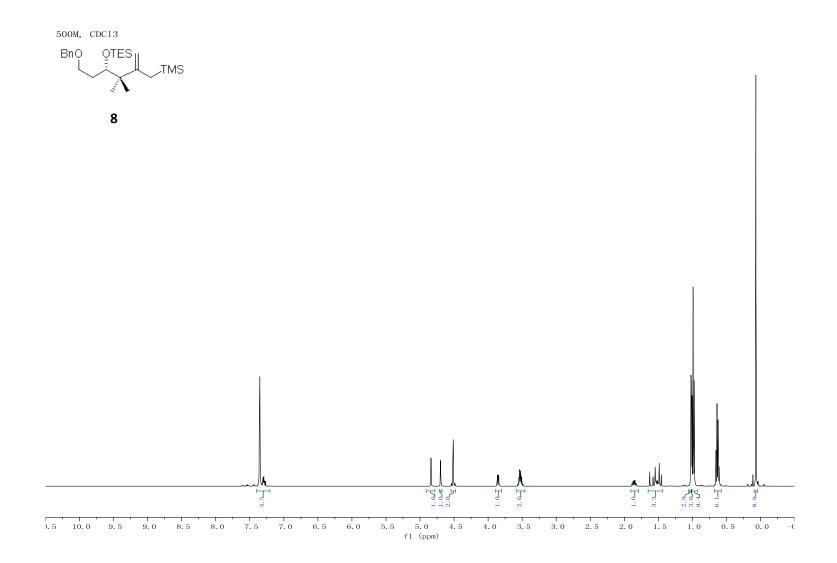





Figure S4. Comparison of ¹³C spectrum of natural cocosolide (1) (from Cocos Lagoon) and the synthetic cocosolide (1).

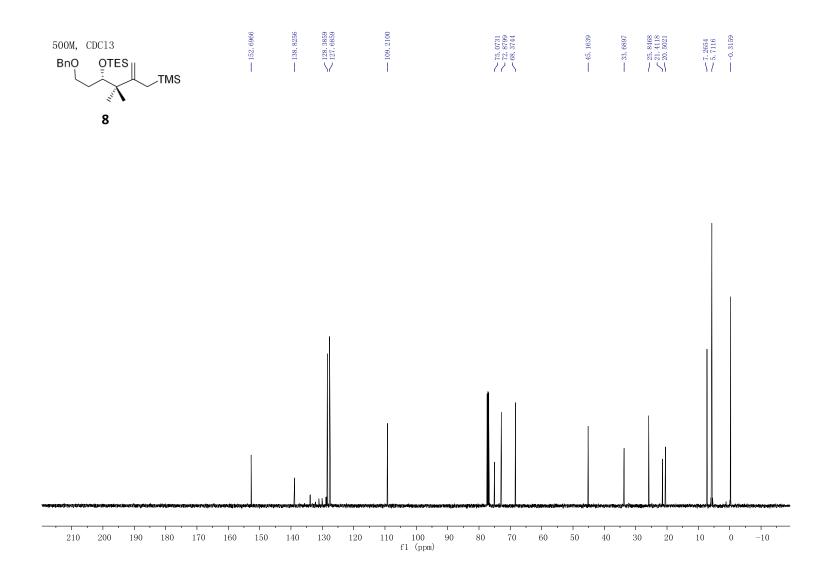


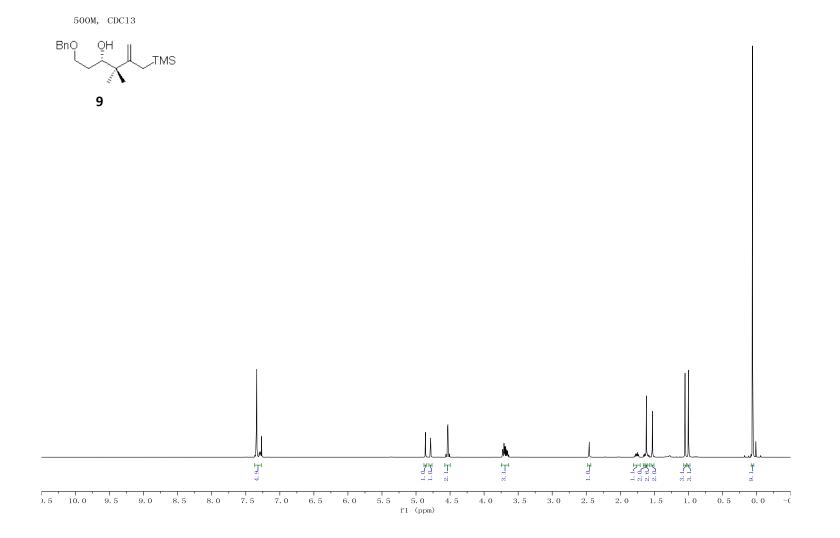

400M, CDC13

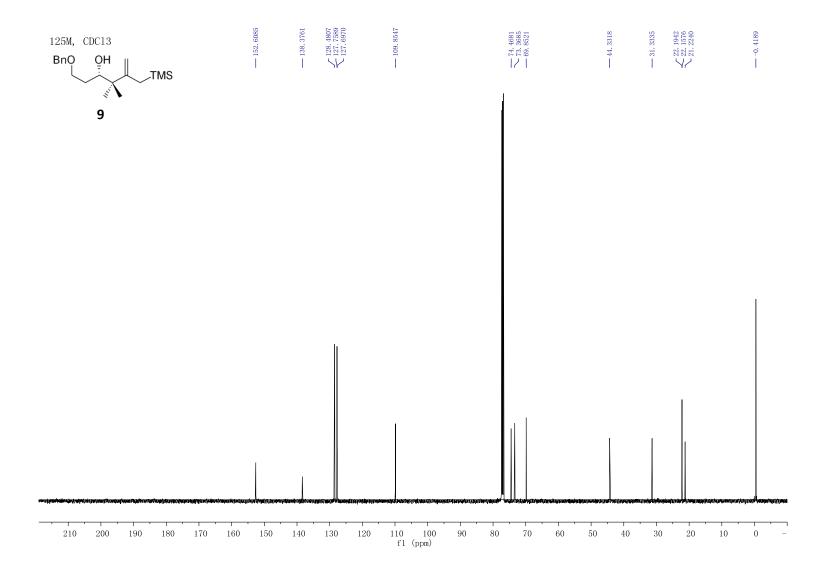


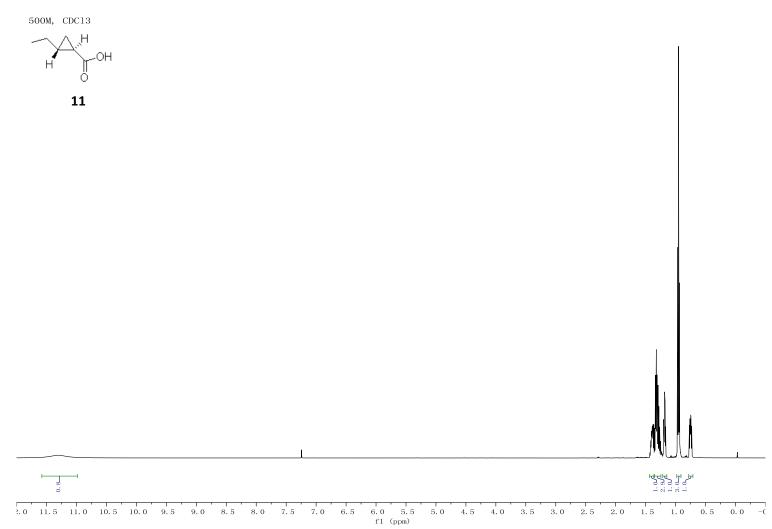


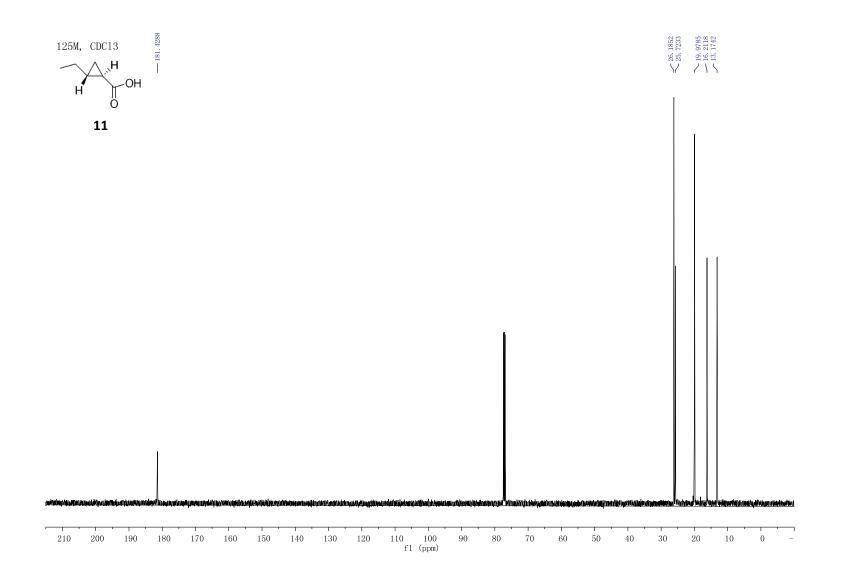
500M, CDC13

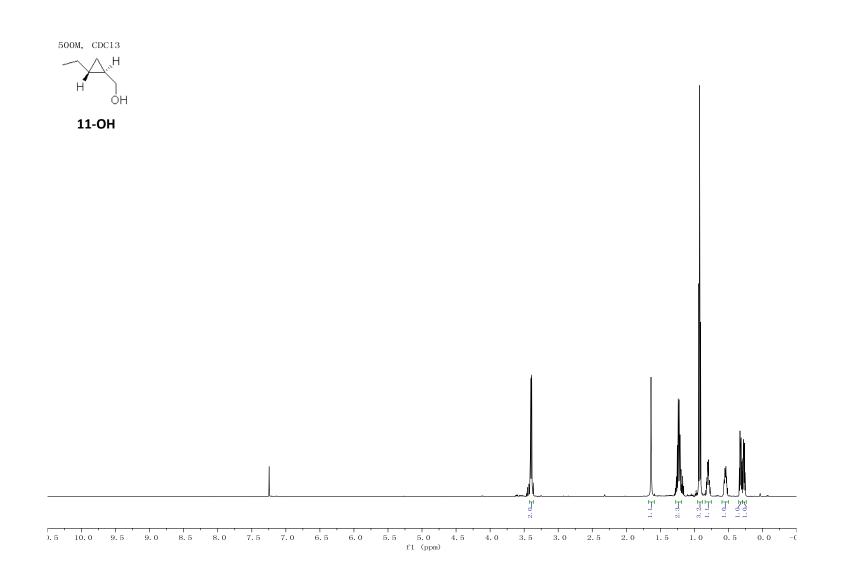


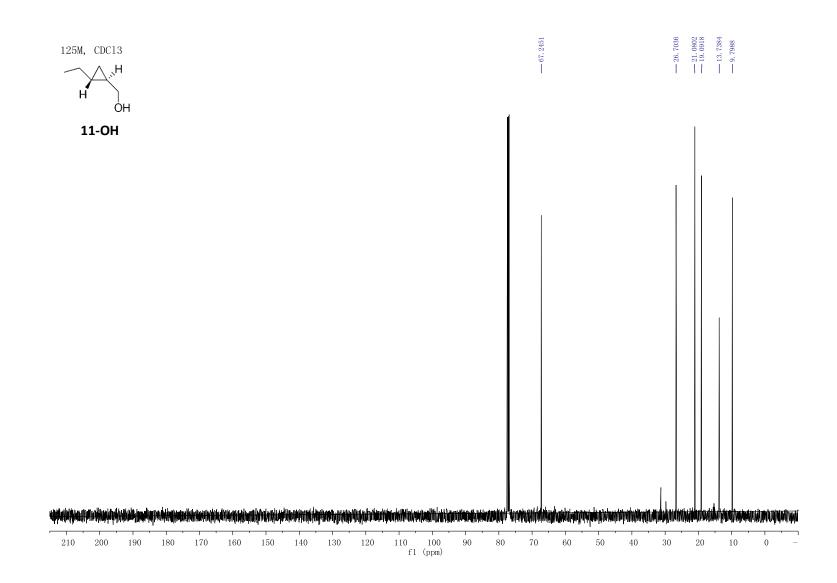


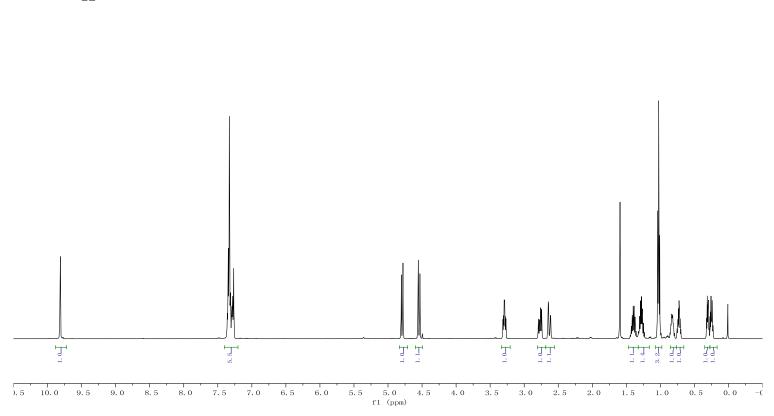


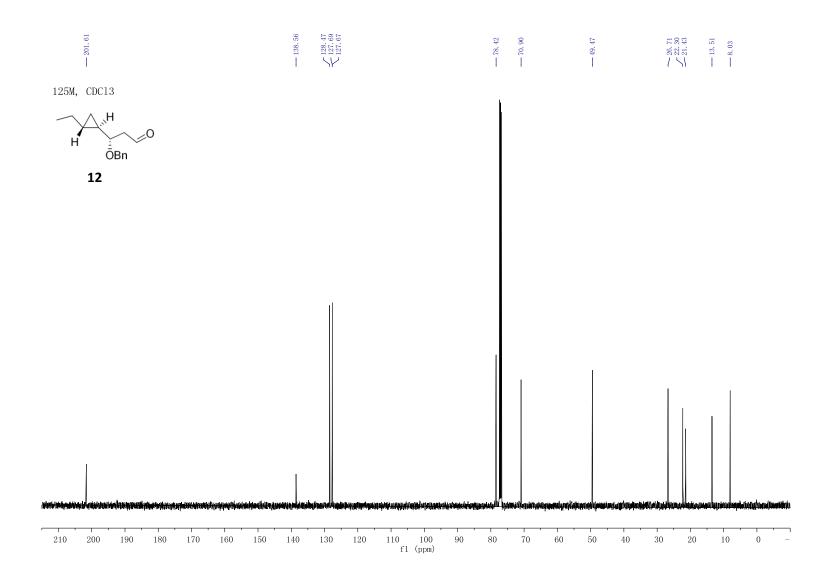


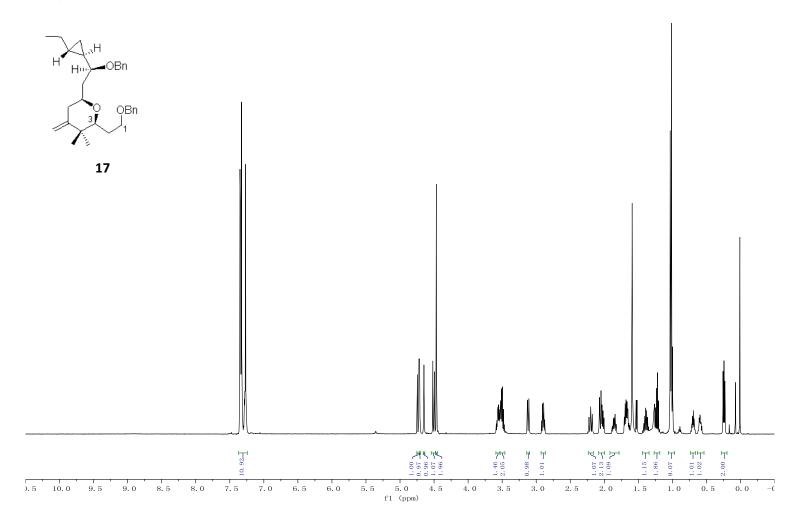

S57

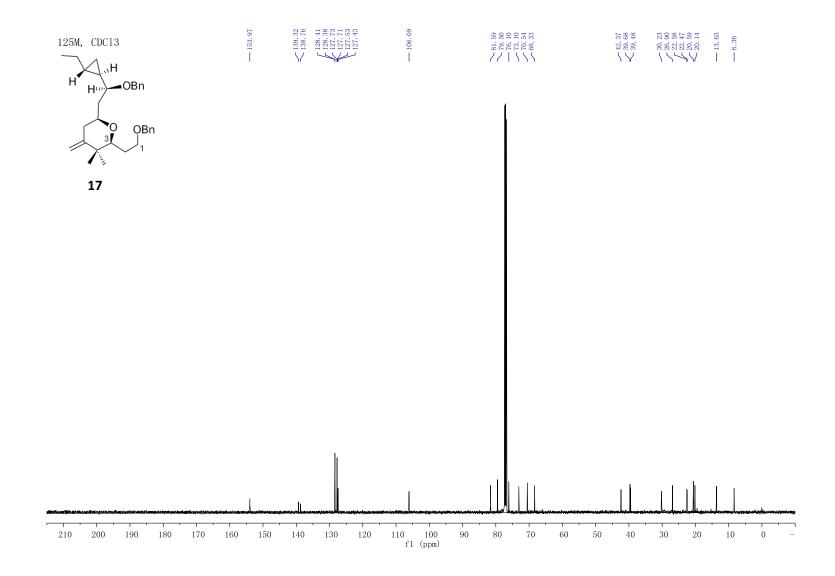


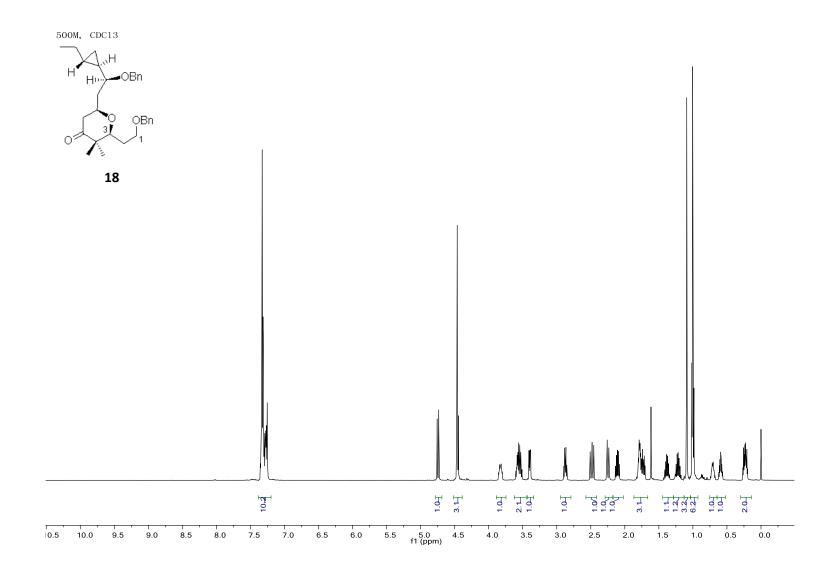


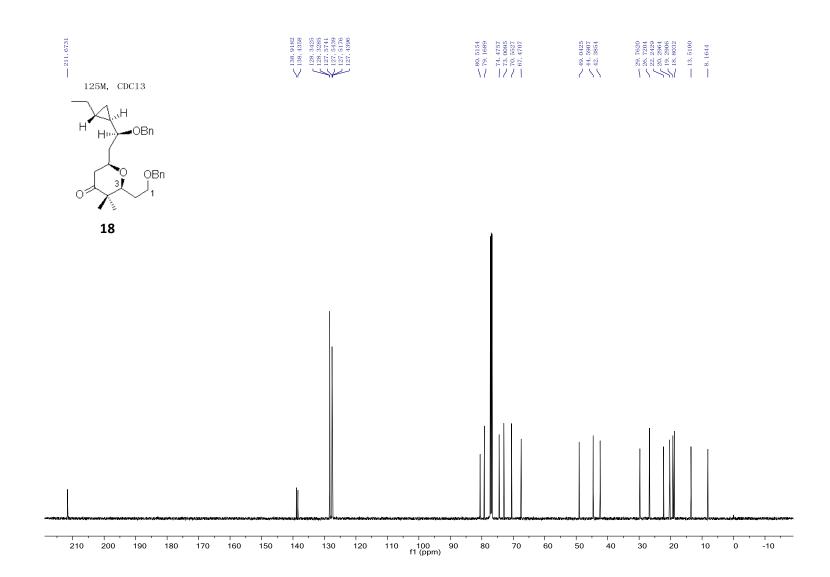


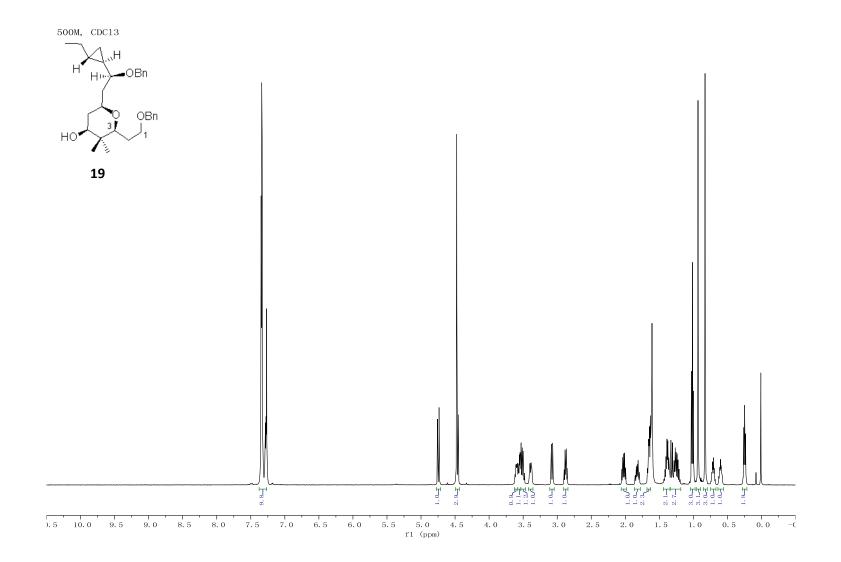


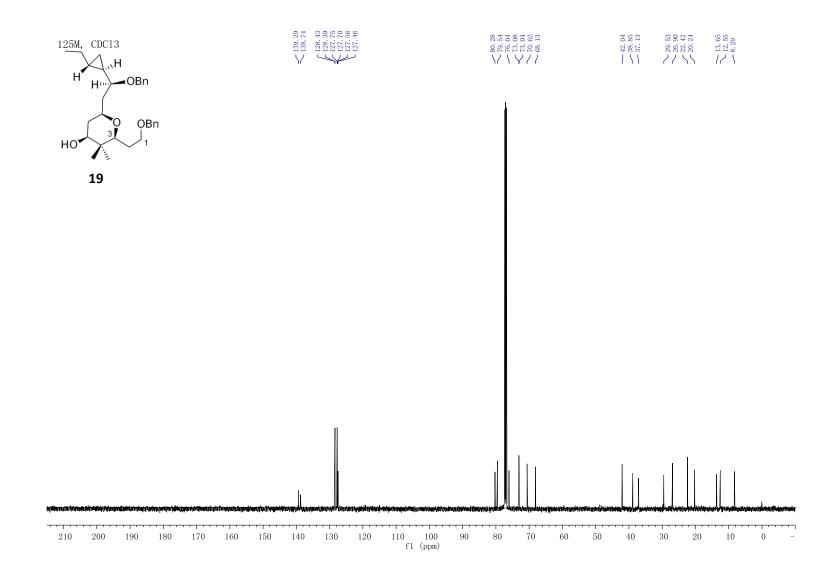


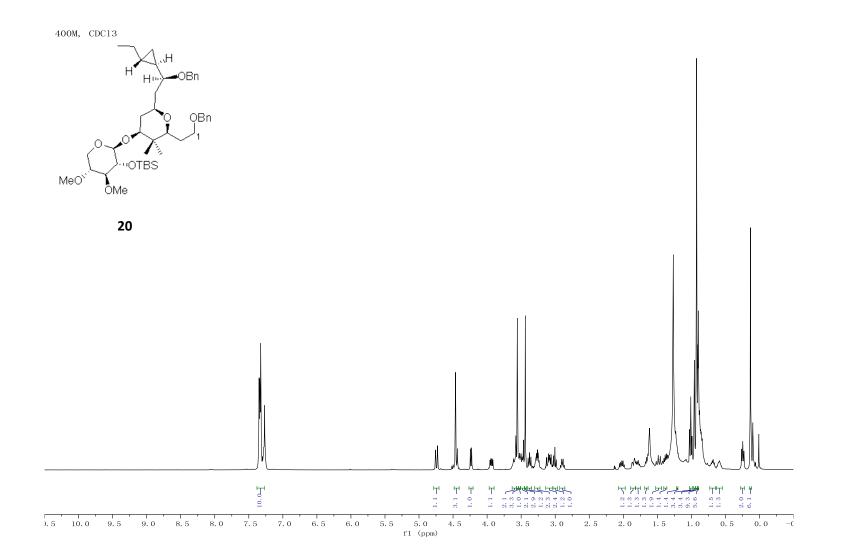

12

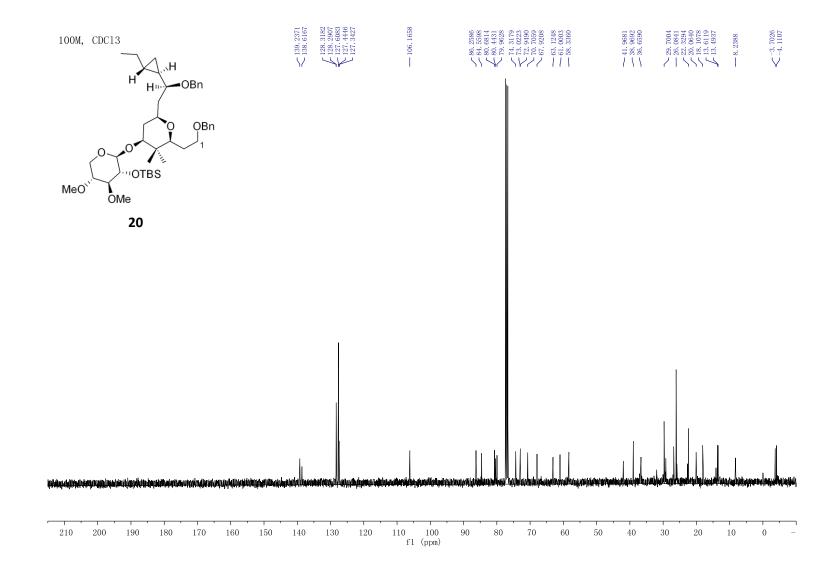

S65

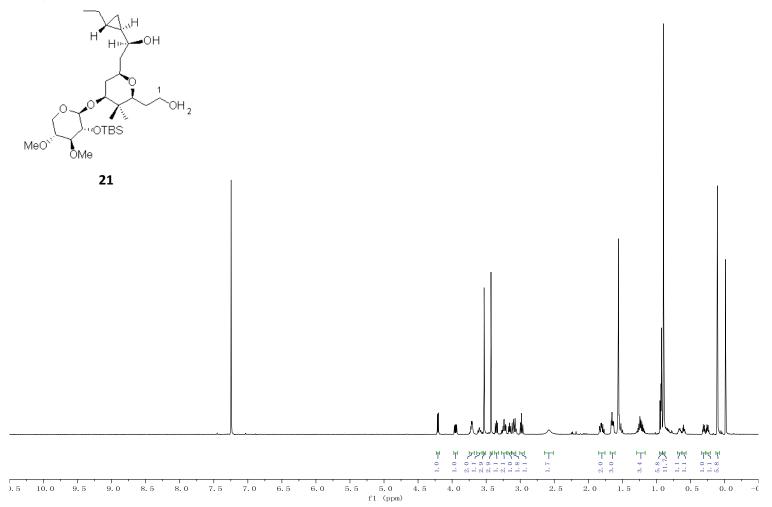


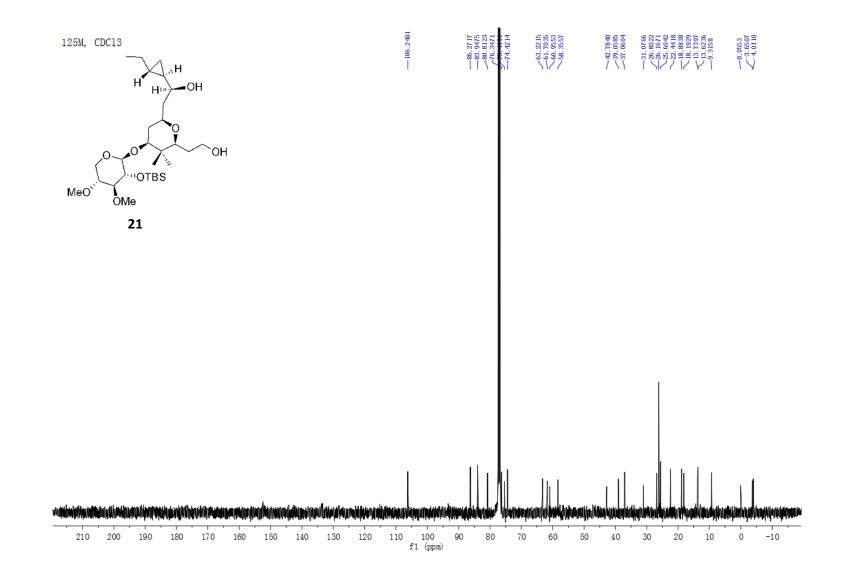

500M, CDC13

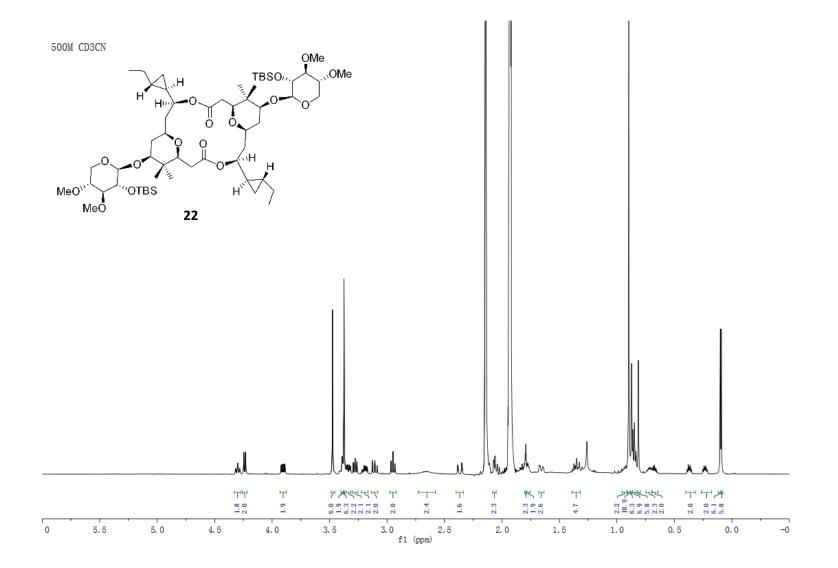


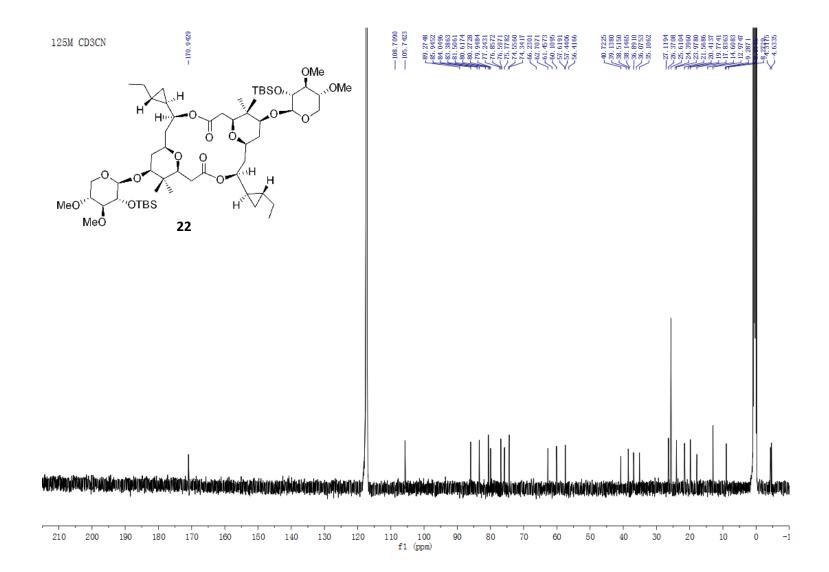


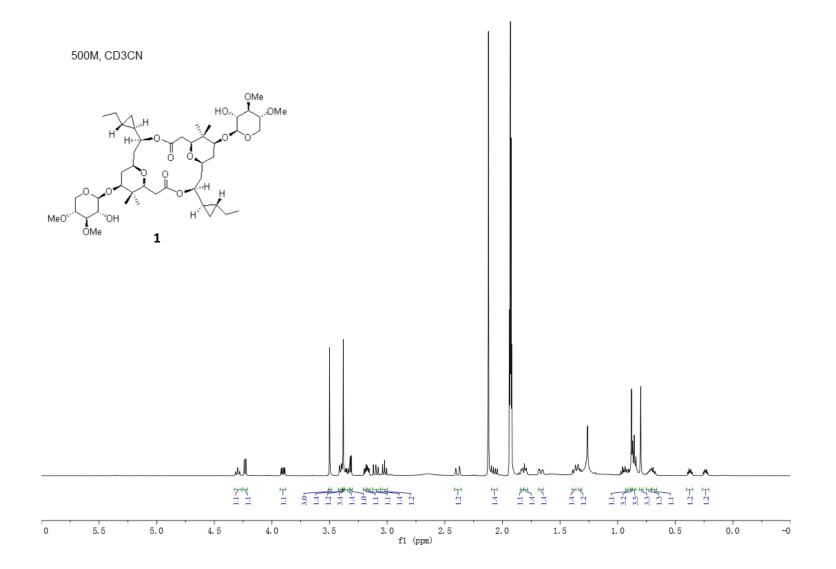


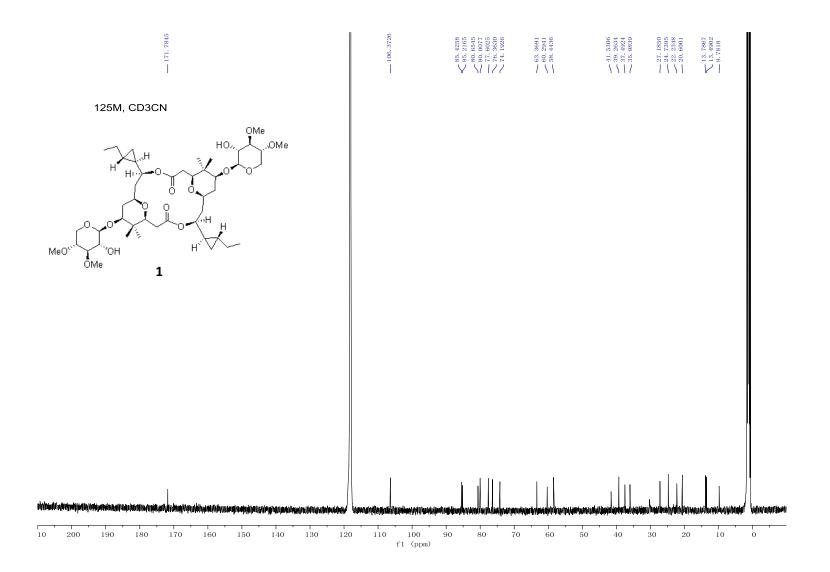


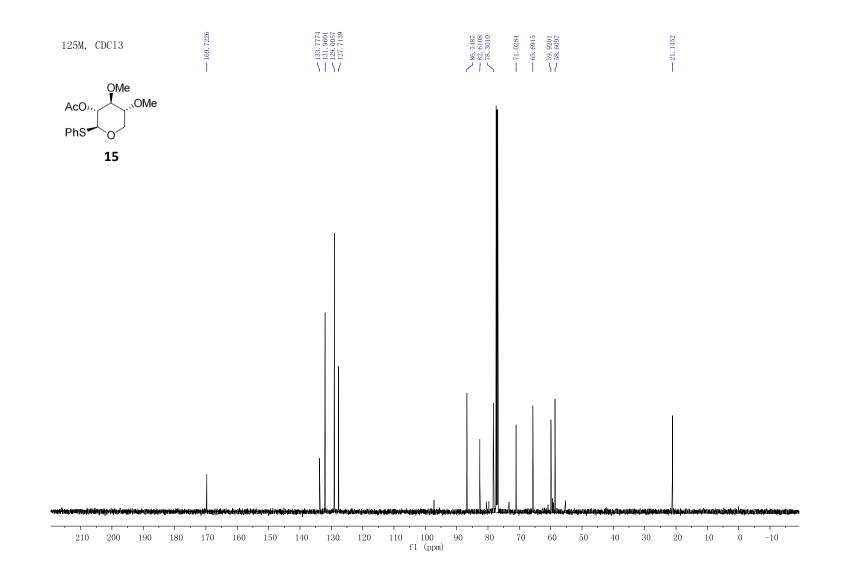


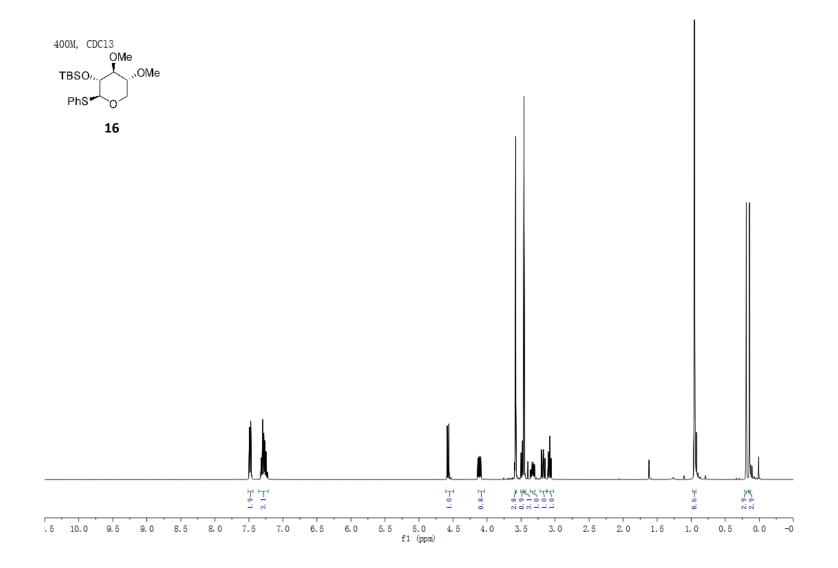


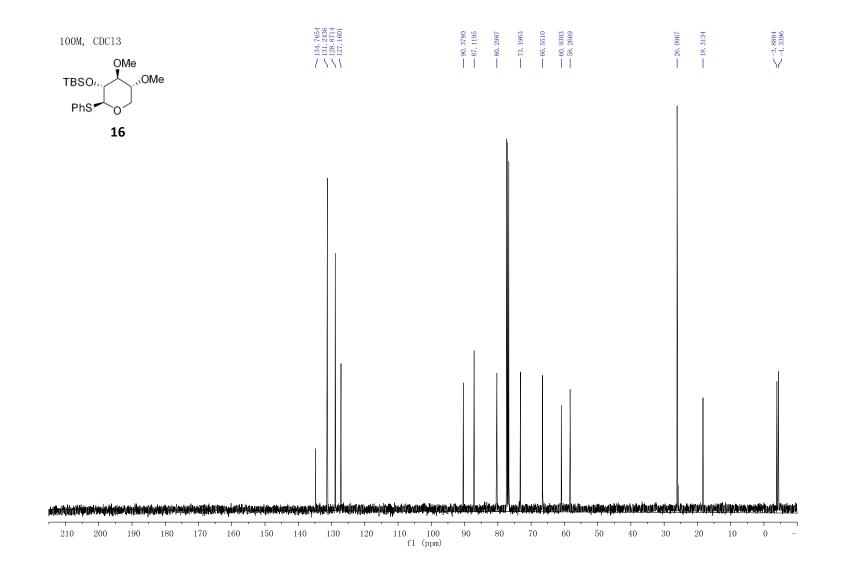




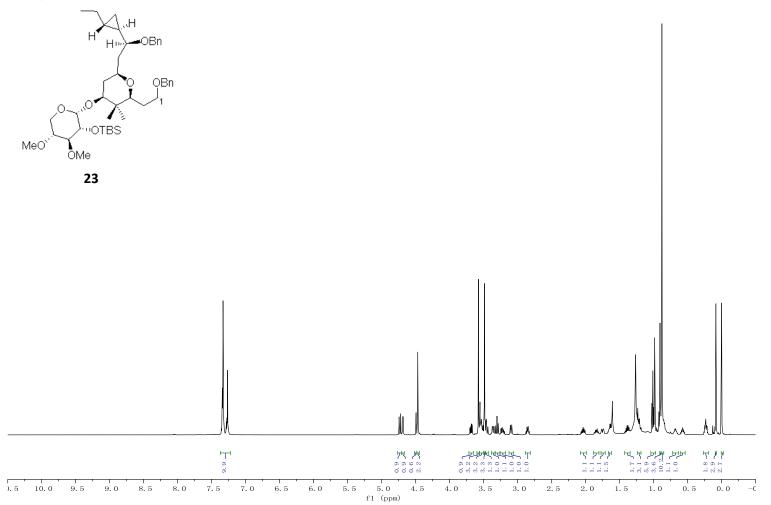


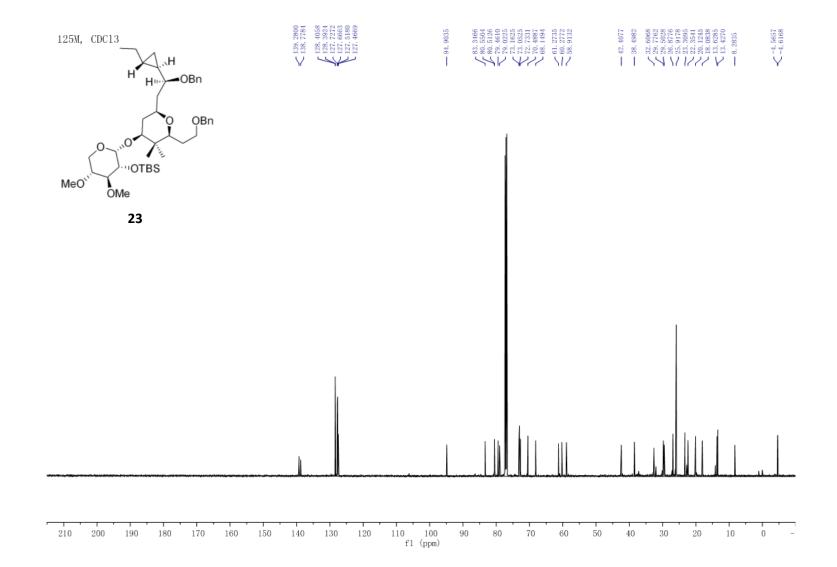


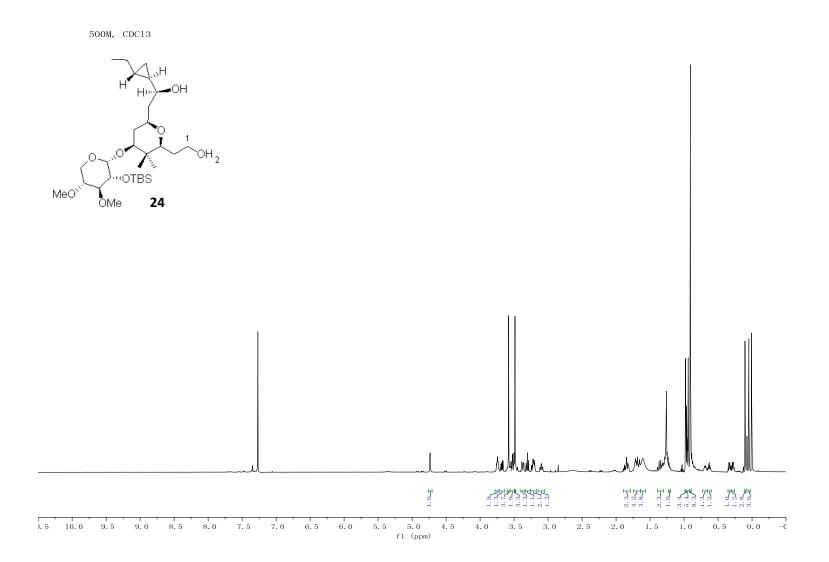


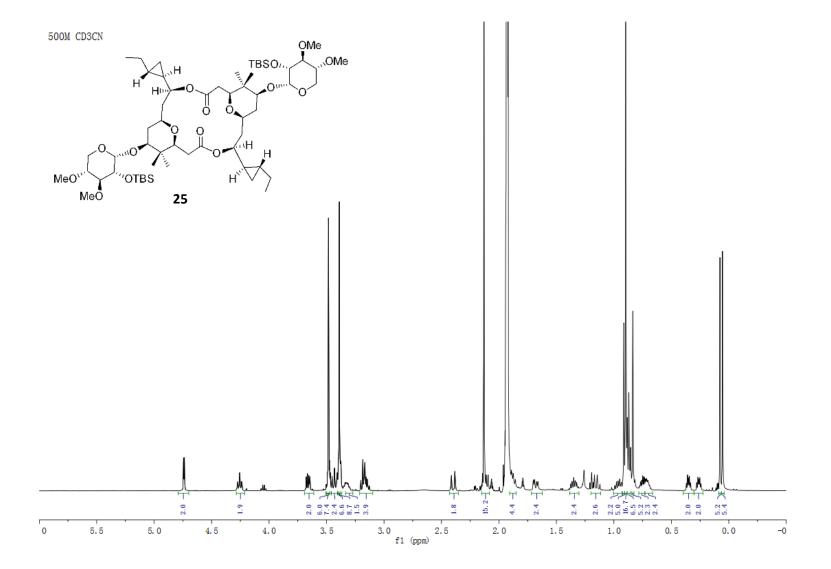


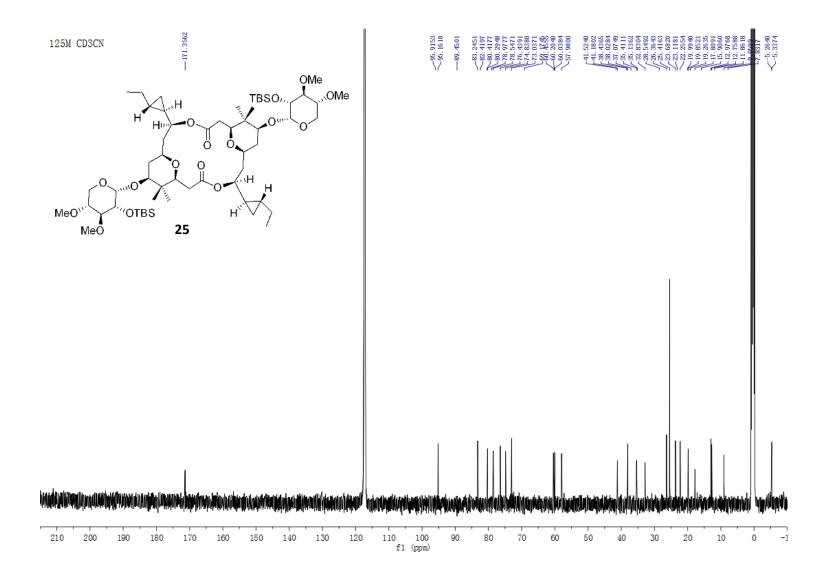
1

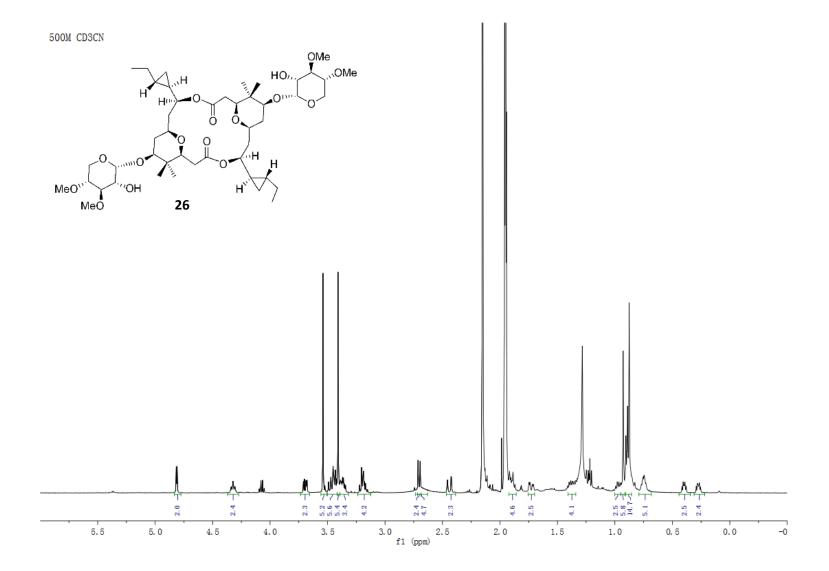


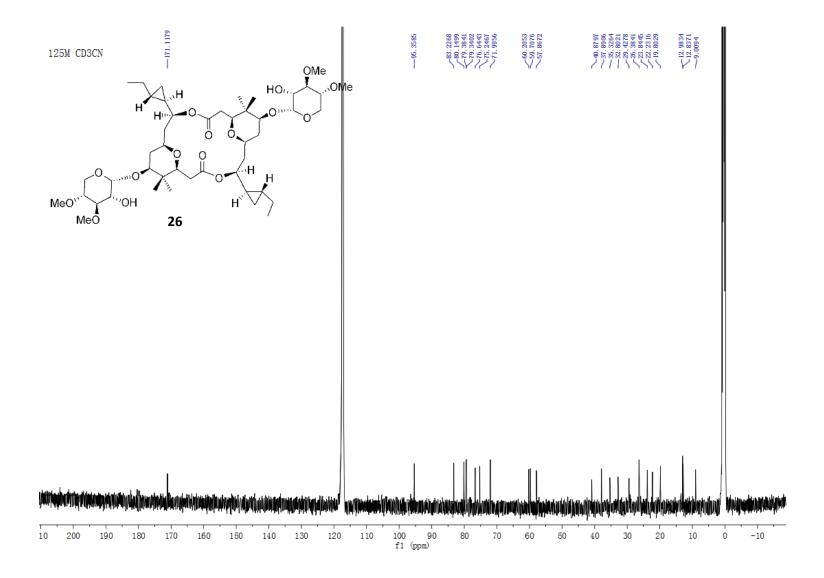


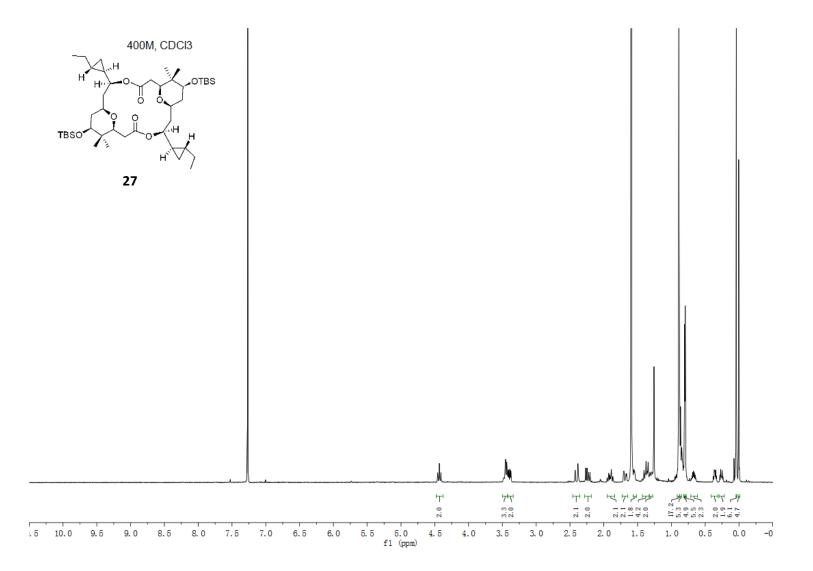


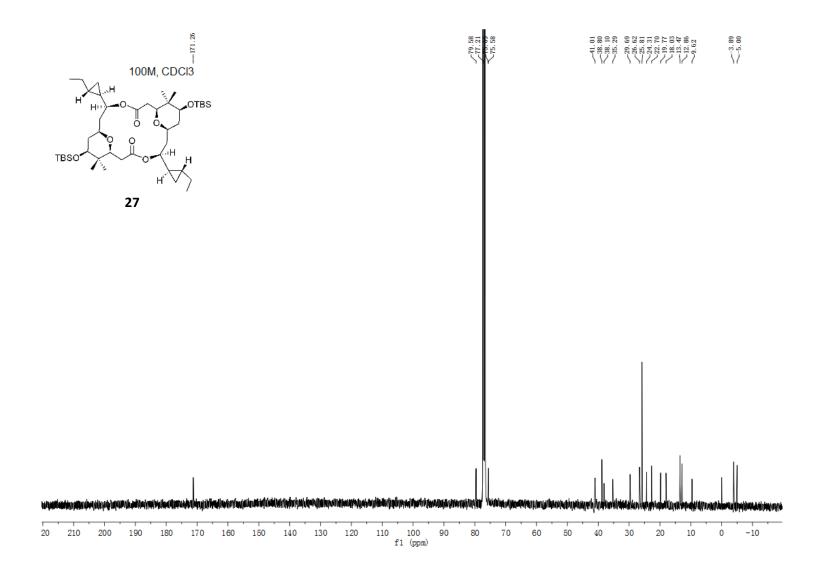


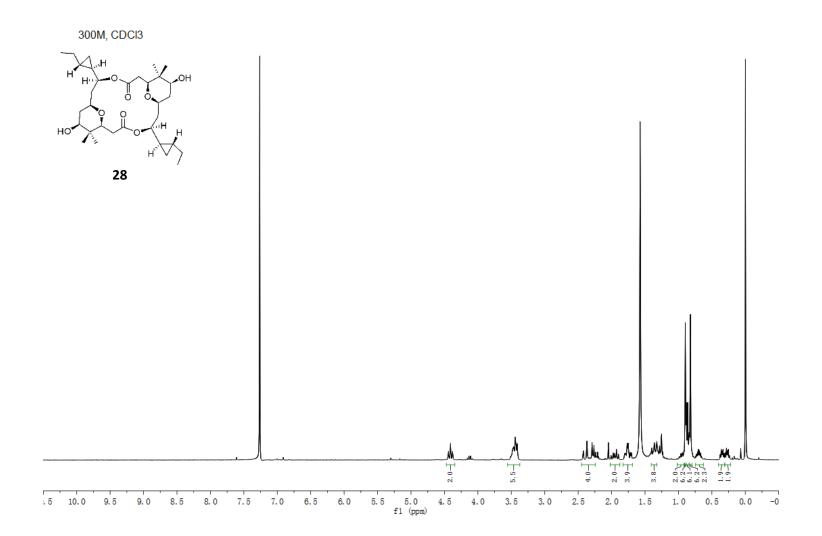


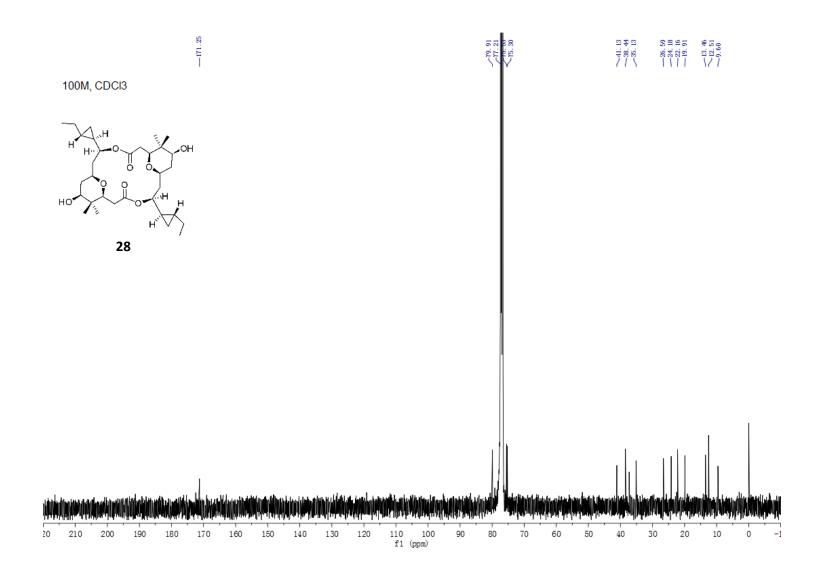












SUPPLEMENTARY REFERENCES

- (1) APEX2 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (2) SADABS, Sheldrick, G.M. "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
- (3) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
- (4) Barbour, L. J. J. Supramol. Chem. 2001, 1, 189.