Supporting information for

A >200 meV uphill thermodynamic landscape for radical transport in *E. coli* ribonucleotide reductase determined using fluorotyrosine-substituted enzymes

Kanchana R. Ravichandran[†], Alexander T. Taguchi[†], Yifeng Wei[†], Cecilia Tommos[§], Daniel G. Nocera^{\perp ,*}, JoAnne Stubbe^{†,‡,*}

*To whom correspondence should be addressed: dnocera@fas.harvard.edu, stubbe@mit.edu

[†] Department of Chemistry and [‡] Department of Biology, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139, United States

[§] Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA

19104, United States

¹ Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street,

Cambridge, MA 02138, United States

SUPPORTING INFORMATION TABLE OF CONTENTS

Detailed description of data analysis using Method B

Table S1: Temperature dependence of Y₃₅₆• formation: Hand-quench vs rapid freeze-quench

Table S2: The pH dependence of Y₃₅₆• formation

Table S3: Temperature dependent equilibration of F_3Y_{122} and Y_{356} in the reaction of F_3Y_{122} - $\beta 2$,

CDP, ATP and $Y_{731}F-\alpha 2$ or $Y_{730}F-\alpha 2$

Table S4: Hyperfine values (MHz) for β -¹H and ¹⁹F of F₂Y• at different positions on pathway

Figure S1: Analysis by method B for one trial of the F_3Y_{122} - $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction as a function of temperature

Figure S2: Analysis by method B for one trial of the F_3Y_{122} - $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction as a function of pH

Figure S3: Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction as a function of temperature (2–15 °C)

Figure S4: Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction as a function of temperature (15–37 °C)

Figure S5: Temperature dependence of Y₃₅₆• formation monitored by RFQ-EPR spectroscopy

Figure S6: Temperature dependence of Y_{356} • formation in the reaction of F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ as determined by HQ- and RFQ-EPR spectroscopies

Figure S7: Temperature dependent equilibration of F_3Y_{122} • and Y_{356} • in the reaction of F_3Y_{122} •β2, CDP, ATP and $Y_{731}F$ -α2 or $Y_{730}F$ -α2

Figure S8: Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction at 25 °C as a function of pH

Figure S9: Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction at 5 °C as a function of pH

Figure S10: The pH dependence of Y_{356} • formation in the reaction of F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ at 5 °C

Figure S11: Reaction of F_2Y_{356} - $\beta 2$, $Y_{731}F$ - $\alpha 2$, CDP and ATP monitored by RFQ-EPR spectroscopy

Detailed description of data analysis using Method B. Data analysis by Method B is demonstrated here for one trial of the temperature-dependent EPR studies of the reaction of F_3Y_{122} •- $\beta 2$ with $Y_{731}F$ - $\alpha 2$, CDP and ATP. In the first step, a baseline correction was performed using the regions of the spectrum where no signal is expected (g-values < 1.955 and > 2.051). A second order polynomial function of the form $ax^2 + bx + c$ was found to be sufficient to correct for the slight curvature of the baseline in the EPR spectra. Without this baseline correction, a systematic reduction in the calculated percentage of Y_{356} • spectra from 0 to 3% was observed (see Table S1 and S2 under Method B).

In the second step, 0.5 equiv of the total $F_3Y_{122} \cdot \beta^2$ was subtracted from each EPR spectrum using the $F_3Y_{122} \cdot \beta^2$ reference spectrum.¹ The resulting composite spectra show the interconversion between $F_3Y_{122} \cdot$ and $Y_{356} \cdot$ as a function of temperature, free from the complications associated with half sites reactivity (Figure S1A-B). This subtraction decreases the S/N level of the spectra such that the relative amounts of $F_3Y_{122} \cdot$ and $Y_{356} \cdot$ cannot be reliably determined by eye (Figure S1C). Therefore, a script was written in Matlab 2016a to subtract the remaining $F_3Y_{122} \cdot$ determined by adjusting the intensity of the $F_3Y_{122} \cdot \beta^2$ reference spectrum until the least-squares difference between the reference spectrum and the composite spectrum in the g-value interval between 2.0363 to 2.0390 (this defines the highest S/N region of the low-field $F_3Y_{122} \cdot$ features) was minimized (Figure S1C). The amount of $Y_{356} \cdot$ after subtraction of the remaining $F_3Y_{122} \cdot$ sectrum in the solution of the spectrum in the g-value interval between 2.0363 to 2.0390 (this defines the highest S/N region of the low-field $F_3Y_{122} \cdot$ features) was minimized (Figure S1C). The amount of $Y_{356} \cdot$ after subtraction of the remaining $F_3Y_{122} \cdot$ was determined by double integration. The $Y_{356} \cdot$ spectrum determined by this method shown in Figure S1D is the same in each sample, supporting the robustness of the method.

Total spin determination: Methods A and B. The total spin of the EPR spectra was checked by double integration to ensure that Methods A and B were not biased by spin loss artifacts. No significant spin loss was observed in any of the samples. Less than a 3% variation in the total spin was determined from EPR spectra of samples that had undergone freeze-thaw cycles at 25 °C, 2 °C, and then back to 25°C (Table S3).

TABLE S1. Temperature dependence of Y_{356} • formation: hand-quench (HQ) vs rapid freezequench (RFQ).

Temperature (°C)	HQ-Method A	HQ-Method B	RFQ-Method A
- · · /	(% Y ₃₅₆ • of total spin)	(% Y ₃₅₆ • of total spin)	(%Y ₃₅₆ • of total spin)
2	13 ± 2	17 ± 5	19
5	16 ± 2	21 ± 1	30
8	21 ± 1	24 ± 1	-
10	24 ± 1	31 ± 4	36
12	22 ± 2	28 ± 1	-
15	27 ± 1	31 ± 2	37
20	28 ± 3	34 ± 4	43
25	29 ± 3	34 ± 5	41
30	33 ± 4	37 ± 3	42
37	33 ± 2	33 ± 1	40

The HQ data represent the averages of three independent trials. The RFQ data represent a single trial. Analysis methods A and B are described in the main text.

pН	5 °C-Method A	5 °C-Method B	25 °C-Method A	25 °C-Method B
6.8	_ ^a	4 ± 1	5 ± 2	9 ± 1
7.0	5^b	6 ± 2	12 ± 1	14 ± 2
7.2	10 ± 2	10^{b}	19 ± 1	30 ± 5
7.4	14 ± 4	18 ± 2	25 ± 2	36 ± 3
7.6	18^{b}	18 ± 4	31^{b}	35 ± 5
7.8	25 ± 2	28 ± 6	35^b	42 ± 2
8.0	26 ± 3	31 ± 6	38 ± 3	43 ± 1

TABLE S2. The pH dependence of Y_{356} • formation.

The numbers represent percentage Y356• of total spin. Analysis methods A and B are described in the main text.

^{*a*} Y_{356} • amount was < 3%. ^{*b*} The two trials provided the same quantitation.

TABLE S3. Temperature dependent equilibration of F_3Y_{122} • and Y_{356} • in the reaction of F_3Y_{122} •- $\beta 2$, CDP, ATP and $Y_{731}F$ - $\alpha 2$ or $Y_{730}F$ - $\alpha 2$.

$\alpha 2$ mutant	$25 \circ C \rightarrow 2 \circ C \rightarrow 25 \circ C$		
	(% Y_{356} • of total spin)		
Y ₇₃₁ F	$35 \rightarrow 16 \rightarrow 30$		
Y ₇₃₀ F	$26 \rightarrow 12 \rightarrow 30$		

The reaction mixture was incubated at 25 °C, frozen in liquid isopentane and analyzed by EPR spectroscopy. This same sample was subject to freeze-thaw cycles and analyzed at 2 °C and again, at 25 °C. No total spin loss was recorded with the freeze-thaw cycles. The composite spectra of each reaction are shown in Figure S7.

Position	Nucleus	A _{xx}	A_{yy}	A _{zz}
$F_2Y_{122}\bullet^a$	β- ¹ Η	52	50	56
	¹⁹ F	9	16	157
F_2Y_{730} • ^{<i>b,c</i>}	β- ¹ Η	63	63	63
	¹⁹ F	-15	-3	151
$F_2Y_{731}e^{b,c}$	β- ¹ Η	40	40	40
	¹⁹ F	-15	-3	157
F_2Y_{356} • ^{<i>b,d</i>}	β- ¹ Η	54	52	54
	¹⁹ F	-15	-3	147

TABLE S4. Hyperfine values (MHz) for β -¹H and ¹⁹F of F₂Y• at different positions on pathway.

^{*a*} Reference 1 and 2.

^{*b*} The intrinsic EPR linewidth of 17 MHz was used. The hyperfine values for 2,6⁻¹H and one of the two β -¹H are significantly smaller than the EPR linewidth and were not included in the simulations.

^c g-values of 2.0063, 2.0044 and 2.0022 were used. The simulation parameters were taken from reference 3.

 d g-values of 2.0073, 2.0044 and 2.0022 were used.³

Figure S1. Analysis by Method B (main text) is described for one experiment in which the equilibration of the reaction mixture generated when $F_3Y_{122} \cdot \beta 2$ is incubated with $Y_{731}F \cdot \alpha 2$, CDP, and ATP as a function of temperature is examined. (A) Composite spectra before subtraction of nonreacting $F_3Y_{122} \cdot$. (B) Composite spectra after subtracting the nonreacting $F_3Y_{122} \cdot$ which shows the interconversion between $F_3Y_{122} \cdot$ and $Y_{356} \cdot$ as a function of temperature. (C) Least-squares fitting of the $F_3Y_{122} \cdot \beta 2$ reference spectrum (red dashed line) to the composite spectra in the g-value range 2.0363 to 2.0390 (marked by two vertical black lines). (D) Overlay of $Y_{356} \cdot$ spectra generated after subtraction of the remaining $F_3Y_{122} \cdot$ in (C) at different temperatures. The intensities of the spectra were normalized for visual comparison. At 2 °C (blue trace) the spectrum is slightly distorted relative to the other difference spectra. This observation is likely a consequence of the lower amount of $Y_{356} \cdot$ signal at this temperature.

Figure S2. Analysis by Method B (main text) for the equilibration of the reaction mixture generated when F_3Y_{122} •- $\beta 2$ is incubated with $Y_{731}F$ - $\alpha 2$, CDP, and ATP as a function of pH at 25 °C. (A) All spectra from pH 6.8 to 8.0 are included. (B) Only spectra from pH 7.2 to 8.0 are included as the level of the Y_{356} • at the low pHs are very low.

FIGURE S3. Composite EPR spectra of the $F_3Y_{122} \cdot \beta 2/Y_{731}F \cdot \alpha 2/CDP/ATP$ reaction as a function of temperature (2–15 °C). The composite spectrum at each temperature was acquired on three independently prepared samples. The low- and high-field regions of the spectra for trial 1 (A and B), trial 2 (C and D) and trial 3 (E and F) are shown. The color code is described in panel A. The dotted lines identify spectral features that are characteristic of Y_{356} . Trial 1 is also shown in Figure 3 of the main text.

FIGURE S4. Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction as a function of temperature (15–37 °C). The composite spectrum at each temperature was acquired on three independently prepared samples. The low- and high-field regions of the spectra for trial 1 (A and B), trial 2 (C and D) and trial 3 (E and F) are shown. The color code is described in panel A. The dotted lines identify spectral features that are characteristic of Y_{356} •.

FIGURE S5. Temperature dependence of Y_{356} • formation monitored by RFQ-EPR spectroscopy. The composite EPR spectra recorded upon reacting F_3Y_{122} •- $\beta 2$ (0.8 F_3Y •/ $\beta 2$, final concentration 35 μ M), $Y_{731}F$ - $\alpha 2$ (35 μ M), CDP (1 mM) and ATP (3 mM) are shown in A. B and C. Expanded views of the low- and high-field regions of the spectra respectively. The color code is described in panel A.

FIGURE S6. Temperature dependence of Y_{356} • formation in the reaction of F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ as determined by HQ- and RFQ-EPR spectroscopies. The HQ data points (pink dots) represent the averages of three independent trials. The RFQ data points (green dots) represent a single trial.

FIGURE S7. Temperature dependent equilibration of F_3Y_{122} and Y_{356} in the reaction of F_3Y_{122} •- $\beta 2$, CDP, ATP and $Y_{731}F$ - $\alpha 2$ or $Y_{730}F$ - $\alpha 2$. Expanded views of the low- and high-field regions of the spectra for $Y_{731}F$ - $\alpha 2$ (A and B) and $Y_{730}F$ - $\alpha 2$ (C and D). The color code is described in panel A. In each case, the reaction was initiated at 25 °C and the spectrum was recorded (pink). The sample was subsequently thawed, incubated in a water bath set at 2 °C and re-frozen for EPR analysis (orange). The reaction mixture was thawed a third time, incubated in a 25 °C water bath and re-frozen for EPR analysis (blue). The percentage Y_{356} for each spectrum is shown in Table S3. No spin loss was recorded during the freeze-thaw cycles.

FIGURE S8. Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction at 25 °C as a function of pH. The composite spectrum at each pH was acquired on two independently prepared samples. The low- and high-field regions of the spectra for trial 1 (A and B) and trial 2 (C and D) are shown. The colors represent different pH values as described in panel A. The dotted lines identify spectral features that are characteristic of Y_{356} •. Trial 1 is reproduced from the main text (Figure 5).

FIGURE S9. Composite EPR spectra of the F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ reaction at 5 °C as a function of pH. The composite spectrum at each pH was acquired on two independently prepared samples. The low- and high-field regions of the spectra for trial 1 (A and B) and trial 2 (C and D) are shown. The colors represent different pH values as described in panel A. The dotted lines identify spectral features that are characteristic of Y_{356} •.

FIGURE S10. The pH dependence of Y_{356} • formation in the reaction of F_3Y_{122} •- $\beta 2/Y_{731}F$ - $\alpha 2/CDP/ATP$ at 5 °C. A. Percentage Y_{356} • of total spin as a function of pH. B. The log*K* as a function of pH where *K* is the ratio of Y_{356} • to F_3Y_{122} •. The observed pH dependence of slope 1.0 \pm 0.1 supports that the Y_{356} • proton is in fast exchange with solvent.

FIGURE S11. Reaction of F_2Y_{356} - $\beta 2$, $Y_{731}F$ - $\alpha 2$, CDP and ATP monitored by RFQ-EPR spectroscopy. An expanded view of the composite spectra recorded at the indicated time points shows wing features that are assigned to F_2Y_{356} . The pink trace in each panel represents the simulated spectrum of F_2Y_{356} • using the parameters shown in Table S4. The 20 s data set is also reproduced in the main text (Figure 7).

REFERENCES

(1) Minnihan, E. C.; Young, D. D.; Schultz, P. G.; Stubbe, J. J. Am. Chem. Soc. 2011, 133, 15942-5.

(2) Oyala, P. H.; Ravichandran, K. R.; Funk, M. A.; Stucky, P.; Stich, T. A.; Drennan, C. L.; Britt, R. D.; Stubbe, J. J. Am. Chem. Soc. **2016**, *138*, 7951-64.

(3) Yokoyama, K.; Smith, A. A.; Corzilius, B.; Griffin, R. G.; Stubbe, J. J. Am. Chem. Soc. 2011, 133, 18420-32.