
Two-Layer Elastographic 3-D Traction Force
Microscopy: Supplementary Information
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Continuity of deformations across different substratum layers
See figure S1.
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Figure S1. Continuity of deformation across polyacrylamide layers. (a) Top panel: Experimental measurement of the x-deformation applied
by a motile Physarum amoeba at the top xy-plane of the substratum, u(x,y,z = h0), obtained by tracking red fluorescent beads embedded in
the top substratum layer. The scale bar is 50 µm long. Center panel: Experimental measurement of the x-deformation at a second xy-plane
underneath the surface, u(x,y,z = h1), obtained by tracking green fluorescent beads embedded in an intermediate substratum layer.
Bottom panel: Experimental measurements of the deformation in a vertical xz-section of the substratum indicated by the dashed lines in the
top and middle panels, u(x,z). The deformations obtained by tracking both red and green beads in different substratum layers have been
stacked to demonstrate the continuity of the measured deformations in the z direction. The scale bar is 5 µm high. (b) Same as (a) but this
time the y-deformation v exerted by the cell on the substratum is represented. (c) Same as (a) but this time the z-deformation w exerted by the
cell on the substratum is represented.

Traction force microscopy can be performed on a linearly elastic substratum when con-
stant body forces and/or external contact stresses act upon the substratum
The equation of elastostatic equilibrium (1), which is solved to recover traction stresses from measurements of substratum
deformation, is generally accepted to hold when both the body forces and external contact stresses acting on the substratum



are negligible. Here, we demonstrate that this equation also holds in the presence of appreciable body forces and contact
stresses, as long as these are constant in time and the substratum is linearly elastic. Relaxing the assumption of negligible body
forces and external contact stresses can be used to broaden the application of traction force microscopy to a wide range of
non-conventional experimental setups. Particularly, it covers the setup used in our study, where the substratum is subjected to
the weight of an agar cap during the duration of our microscope recordings. We still assume that the inertia and viscosity of the
substratum are negligible, leading to this equation of equilibrium for the substratum at an instant of time twith cell when the cell
is present in the field of view

∇ · [τelastic (uwith cell)]+ρf+δ (S)τcontact = 0, (SI1)

and to this other equation at a different instant of time twhitout cell when the cell is absent from the field of view

∇ · [τelastic (uwithout cell)]+ρf+δ (S)τcontact = 0. (SI2)

In these two equations, uwith cell represents the deformation caused by both the body forces and the cell, whereas uwithout cell
represents the deformation caused by the body forces and external contact stresses in the absence of the cell. The elastic stress
tensor in the substratum is τelastic. The time-independent body force is f and ρ is the substratum density. The external contact
stress is τcontact and δ (S) is a Dirac delta that enforces the application of this stress only at surface S (i.e. z = h in the case of
the agar cap). We now subtract equations (SI1) and (SI2) to obtain

∇ · [τelastic (uwith cell)− τelastic (uwithout cell)] = 0, (SI3)

where the body force and the contact stress cancel out because they are constant in time. We now note that if the substratum is
linearly elastic, equation (SI3) is equivalent to

∇ · [τelastic (uwith cell−uwithout cell)] = 0, (SI3)

where u = uwith cell−uwithout cell is the deformation measured in our experiments by performing image correlation between
z-stacks acquired at t = twith cell and twithout cell . Furthermore, note that u is the deformation caused by the traction stresses
generated by the cell.

Error in the recovered traction stresses as a function of noise parameters
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Figure S2. Relative error in the recovered traction stresses as a function of the signal-to-noise ratio of the measured deformation S2N0 and
the lengthscale of the noise patterns δ/µ . The data were obtained for the synthetic deformation field in eq. (6) of the main text using
σ = 0.45, h0−h1 = 0.15,h0 = 2.5µ and U0 =W0.

The error is defined as

Err(S2N0,δ ) =
||~τ0−~τ(S2N0,δ )||

||~τ0||
,

where~τ0 is the ground truth traction stress vector and~τ(S2N0,δ ) is the traction stress recovered when the deformation field has
additive noise of signal-noise-ratio S2N0 and lengthscale δ . This error is plotted in figure S2.
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Accuracy and robustness of the recovered Poisson’s ratio as a function of the noise
lengthscale
See figure S3.
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Figure S3. Accuracy and robustness of 2LETFM as a function of the lengthscale of the measurement noise, δ , normalized with the
lengthscale of the deformation field at the top plane µ . (a) Recovered value σr of the Poisson’s ratio, plotted as a function of δ/µ . The data
are represented as mean ± standard deviation obtained from N = 100 random realizations. Each curve is obtained for a different value σe of
the exact Poisson’s ratio that is being recovered by 2LETFM. This exact value is indicated with a dashed horizontal line in each case. (b)
Contour plot of the relative error of σr as a function of δ/µ and σe. The relative error is defined as |σr−σe|/σe. (c) Contour plot of the
relative uncertainty of σr as a function of δ/µ and σe. The relative uncertainty is defined as r.m.s.(σr)|/σe. The data were obtained for
S2N = 1 and U0 =W0.
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