Estimating a population cumulative incidence under calendar time trends

Stefan N. Hansen*¹, Morten Overgaard¹, Per K. Andersen², and Erik T. Parner¹

¹Section for Biostatistics, Aarhus University ²Section of Biostatistics, University of Copenhagen

BMC Medical Research Methodology

Additional file 1

The variance of the Kaplan-Meier estimator of the event risk within the study period

We derive the weighted average of the stratum-wise Kaplan–Meier estimators as a non-parametric maximum likelihood estimator and its asymptotic variance when the π_i 's are considered unknown.

Suppose we have a sample consisting of n_i observations from the ith stratum with $n = \sum_i n_i$ being the total sample size. Due to right-censoring we observe $t_{ij} = \tilde{t}_{ij} \wedge c_{ij}$, where \tilde{t}_{ij} is the actual time-to-event and c_{ij} is the censoring time, and $\delta_{ij} = \mathbf{1}_{\tilde{t}_{ij} \leqslant c_{ij}}$ for $i = 1, \ldots, k$ and $j = 1, \ldots, n_i$ with observations being independent. Under independent right-censoring the likelihood is

$$L(\pi_1, \dots, \pi_k, S_1, \dots, S_k) = \prod_{i=1}^k \prod_{j=1}^{n_i} \pi_i f_i(t_{ij})^{\delta_{ij}} S_i(t_{ij})^{1-\delta_{ij}}$$
$$= \prod_{i=1}^k \pi_i^{n_i} \prod_{j=1}^{n_i} f_i(t_{ij})^{\delta_{ij}} S_i(t_{ij})^{1-\delta_{ij}}$$

with (S_1,\ldots,S_k) and (f_1,\ldots,f_k) being the conditional survival functions and conditional densities in the k strata respectively and (π_1, \ldots, π_k) being the probabilities of belonging to the strata. The corresponding non-parametric likelihood function [2] is thus

$$\widetilde{L}(\pi_1, \dots, \pi_k, S_1, \dots, S_k) = \prod_{i=1}^k \pi_i^{n_i} \prod_{j=1}^{n_i} \Delta S_i(t_{ij})^{\delta_{ij}} S_i(t_{ij})^{1-\delta_{ij}}$$

with $\Delta S_i(t_{ij}) = S_i(t_{ij}) - S_i(t_{ij})$ being the jump at t_{ij} . Maximizing this non-parametric likelihood function yields the estimates $\hat{\pi}_i = n_i/n$ which is the observed proportion and $\hat{S}_i = (\hat{S}_i(t))_{t \geq 0}$, the Kaplan–Meier estimator in the *i*th stratum, for $i=1,\ldots,k$. Let $S_{\mathbf{w}}(t_1)=P(T\leqslant U)$ with $U=\sum_{i=1}^k t_i\mathbf{1}_{B=i}$ and let

$$\widehat{S}_{\mathbf{w}}(t_1) = \sum_{i=1}^{k} \frac{n_i}{n} \widehat{S}_i(t_i)$$

denote the Kaplan-Meier estimator of the within-study event risk. If $\hat{\pi} = (\hat{\tau}_1, \dots, \hat{\tau}_k)^{\mathsf{T}}$ is the vector of observed proportions and $\hat{\mathbf{S}} = (\hat{S}_1(t_1), \dots, \hat{S}_k(t_k))^\intercal$ is the vector of Kaplan–Meier estimates evaluated at the end of follow-up times t_1, \ldots, t_k , then by properties of the non-parametric maximum likelihood estimates we have

$$\sqrt{n}\left(\begin{pmatrix} \widehat{\mathbf{x}} \\ \widehat{\mathbf{S}} \end{pmatrix} - \begin{pmatrix} \mathbf{\pi} \\ \mathbf{S} \end{pmatrix}\right) \xrightarrow{\mathcal{D}} \mathcal{N}_{2k}\left(\mathbf{0}, \begin{pmatrix} \mathbf{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_2 \end{pmatrix}\right),$$

^{*}Corresponding author; Address: Bartholins Allé, DK-8000 Aarhus C - E-mail: stefanh@ph.au.dk

where $\mathbf{\pi} = (\pi_1, \dots, \pi_k)^{\mathsf{T}}, \mathbf{S} = (S_1(t_1), \dots, S_k(t_k))^{\mathsf{T}}$. Here

$$\Sigma_1 = \operatorname{diag}(\boldsymbol{\pi}) - \boldsymbol{\pi} \boldsymbol{\pi}^{\intercal}, \qquad \Sigma_2 = \operatorname{diag}(\sigma_1^2/\pi_1, \dots, \sigma_k^2/\pi_k),$$

for some $\sigma_1^2, \ldots, \sigma_k^2 > 0$.

The delta method [1] on $g(x_1, \ldots, x_{2k}) = \sum_{i=1}^k x_i x_{k+i}$ now yields

$$\sqrt{n}(\widehat{S}_{w}(t_1) - S_{w}(t_1)) \xrightarrow{\mathcal{D}} \mathcal{N}_1(0, \sigma_w^2)$$

with

$$\sigma_{\mathrm{w}}^2 = egin{pmatrix} \mathbf{S}^\intercal & oldsymbol{\pi}^\intercal \end{pmatrix} egin{pmatrix} oldsymbol{\Sigma}_1 & \mathbf{0} \ \mathbf{0} & oldsymbol{\Sigma}_2 \end{pmatrix} egin{pmatrix} \mathbf{S} \ oldsymbol{\pi} \end{pmatrix} = \mathbf{S}^\intercal oldsymbol{\Sigma}_1 \mathbf{S} + oldsymbol{\pi}^\intercal oldsymbol{\Sigma}_2 oldsymbol{\pi}.$$

The variance of this Kaplan-Meier estimator is thus approximately given by

$$\operatorname{Var}(\widehat{S}_{\mathbf{w}}(t_1)) \approx \frac{\sigma_{\mathbf{w}}^2}{n} = \frac{1}{n} \left[\sum_{i=1}^k \pi_i S_i(t_i)^2 - \left(\sum_{i=1}^k \pi_i S_i(t_i) \right)^2 + \sum_{i=1}^k \pi_i \sigma_i^2 \right].$$

If $\widehat{\text{Var}}(\widehat{S}_i(t_i))$ is Greenwood's estimate of the variance σ_i^2/n_i of the Kaplan–Meier estimator in the *i*th group, then σ_i^2 can be estimated by $n_i \widehat{\text{Var}}(\widehat{S}_i(t_i))$. Thus, we may estimate the variance by

$$\widehat{\operatorname{Var}}(\widehat{S}_{\mathbf{w}}(t_1)) = \frac{1}{n} \left[\sum_{i=1}^k \frac{n_i}{n} \widehat{S}_i(t_i)^2 - \left(\sum_{i=1}^k \frac{n_i}{n} \widehat{S}_i(t_i) \right)^2 \right] + \sum_{i=1}^k \frac{n_i^2}{n^2} \widehat{\operatorname{Var}}(\widehat{S}_i(t_i)).$$

References

- [1] Lehmann, E.L.: Elements of Large-Sample Theory. Springer-Verlag, New York (1999)
- [2] van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (2000)