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SUPPLEMENTARY METHODS

Mesh information and tissue properties

The biventricular mesh used in this work was generated from a multi-slice computer

tomography scan as previously described1, with an edge length of 0.4 mm, and contains 2.51

million nodes and 14.2 million tetrahedral elements. The biventricular mesh was embedded in

a torso volume containing lung and bone regions, generated from computer tomography

images of a 43 year old woman. The heart and torso meshes were combined by rotating and

translating into anatomically-realistic concordance. The combined heart-torso mesh consists

of about 3.25 million nodes and 19.4 million tetrahedra.

Myocardial fibre structure was generated using a rule-based method to replicate the findings

of Streeter et al.2 Tissue conductivities were chosen to generate realistic conduction velocities

for the choice of cell model, numerical scheme, and mesh resolution. For the myocardium, the

three orthotropic intracellular conductivities were 1.5, 0.45, and 0.225 mS/cm in the fibre,

sheet, and inter-sheet directions, respectively. Axisymmetric extracellular conductivities of

5.46, 2.03 and 2.03 mS/cm were calculated from these intracellular values scaled by measured

resistivity ratios3. In a 1D fibre model these conductivities resulted in conduction velocities of

57.0, 25.9, 16.2 cm/s, close to the 67, 30, and 17 cm/s wave speeds reported in pig4. Isotropic

conductivities of 0.389 and 0.2 mS/cm were assigned to the lung and bone elements5, and

2.16 mS/cm in the rest of the torso6.

As no regional gradients have been reported in the healthy human ventricles in the fast

sodium current, which is the main current sustaining ventricular activation, we used the

endocardial variant of the 2006 ten Tusscher-Panfilov model7 throughout the entire ventricles

for model simplification.

Numerical solver

The full coupled heart-torso model was solved simultaneously for improved accuracy and



convergence8. All simulations were solved using the finite element solver Chaste9 with a

variable ODE time step and a bidomain PDE time step of 25 μs. The convergence and 

accuracy of our electrophysiological solver has already been demonstrated during activation

for our choice of mesh resolution, time discretisation and cellular model10. A 150 ms

simulation typically required 30 minutes of computer time on 240 CPU cores. Post-processing

of simulation results was performed using custom scripts in ParaView and MATLAB.



SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Visualisation of the combined heart-torso mesh. The coloured spheres indicate the

location of the virtual electrodes, using standard (European) colour-coding.

Figure S2. Effects of variability in lung and bone conductivities on QRS amplitudes. A: Lung

conductivity. B: Bone conductivity. Dashed grey ECG traces: baseline conditions; solid red

and blue ECG traces: increased and decreased conductivities, respectively. ECG grid

resolution: 40 ms/0.1 mV.

Figure S3. Variability in the location of RV free-running Purkinje coupling sites. A: More

apical RV anterior activation site. B: More apical RV posterior activation site. ECG grid

resolution: 40 ms/0.1 mV.
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